Influence of hot rolling on the phase composition, structure, and mechanical properties of metastable (α+β) alloy based on Cu–41 wt % Zn with shape memory effect

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A comprehensive study of the influence of hot rolling on structural-phase transformations and physical and mechanical properties of a metastable (α+β) alloy with a shape memory effect Cu–41wt % Zn is carried out. Structural-phase transformations were are investigated using optical and electron microscopy, X-ray phase analysis, and differential scanning calorimetry (when heated). It is discovered that intermediate bainitic transformations occur in the alloy along with the formation of martensitic phases. The peculiarities of the mechanical behavior of the alloy are established when testing samples using the uniaxial tensile method after hot rolling and subsequent heat treatments. It has been established that hot rolling with a total reduction of 90% and subsequent heat treatment leads to an increase in the ductility of the alloy up to 48%.

Full Text

Restricted Access

About the authors

А. Е. Svirid

Mikheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences

Author for correspondence.
Email: svirid@imp.uran.ru
Russian Federation, Ekaterinburg, 620108

V. G. Pushin

Mikheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences

Email: svirid@imp.uran.ru
Russian Federation, Ekaterinburg, 620108

N. N. Кuraпova

Mikheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences

Email: svirid@imp.uran.ru
Russian Federation, Ekaterinburg, 620108

S. V. Afanasiev

Mikheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences

Email: svirid@imp.uran.ru
Russian Federation, Ekaterinburg, 620108

D. I. Davydov

Mikheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences

Email: svirid@imp.uran.ru
Russian Federation, Ekaterinburg, 620108

L. A. Stashkova

Mikheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences

Email: svirid@imp.uran.ru
Russian Federation, Ekaterinburg, 620108

References

  1. Perkins J. (Ed.) Shape Memory Effects in Alloys. Plenum. London: UK, 1975. 583 p.
  2. Варлимонт Х., Дилей Л. Мартенситные превращения в сплавах на основе меди, серебра и золота. М.: Наука, 1980. 205 с.
  3. Ооцука К., Симидзу К., Судзуки Ю., Сэкигути Ю., Тадаки Ц., Хомма Т., Миядзаки С. Сплавы с эффектом памяти формы. М.: Металлургия, 1990. 224 с.
  4. Duering T.W., Melton K.L., Stockel D., Wayman C.M. (Eds.) Engineering Aspects of Shape Memory Alloys. Butterworth-Heineman: London, UK, 1990.
  5. Хачин В.Н., Пушин В.Г., Кондратьев В.В. Никелид титана: Структура и свойства. М.: Наука, 1992. 160 с.
  6. Пушин В.Г., Кондратьев В.В., Хачин В.Н. Предпереходные явления и мартенситные превращения. Екатеринбург: УрО РАН, 1998. 368 с.
  7. Материалы с эффектом памяти формы: Справ. изд. / Под ред. В.А. Лихачева. Т. 1–4. СПб.: Изд-во НИИХ СПбГУ, 1997, 1998.
  8. Bonnot E., Romero R., Mañosa L., Vives E., Planes A. Elastocaloric effect associated with the martensitic transition in shape-memory alloys // Phys. Rev. Lett. 2008. V. 100. P. 125901.
  9. Planes A., Mañosa L., Acet M. Magnetocaloric effect and its relation to shape memory properties in ferromagnetic Heusler alloys // J. Phys. Condensed Matter. 2009. V. 21. P. 233201.
  10. Cui J., Wu Y., Muehlbauer J., Hwang Y., Radermacher R., Fackler S., Wuttig M., Takeuchi I. Demonstration of high efficiency elastocaloric cooling with large δT using NiTi wires // Appl. Phys. Lett. 2012. V. 101. P. 073904.
  11. Mañosa L., Jarque-Farnos S., Vives E., Planes A. Large temperature span and giant refrigerant capacity in elastocaloric Cu-Zn-Al shape memory alloys // Appl. Phys. Lett. 2013. V. 103. P. 211904.
  12. Dasgupta R. A look into Сu-based shape memory alloys: Present Scenario and future prospects // J. Mater. Res. 2014. V. 29. № 16. P. 1681–1698.
  13. Pushin V., Kuranova N., Marchenkova E., Pushin A. Design and Development of Ti–Ni, Ni–Mn–Ga and Cu–Al–Ni-based Alloys with High and Low Temperature Shape Memory Effects // Materials. 2019. V. 12. P. 2616–2640.
  14. Лукьянов А.В., Пушин В.Г., Куранова Н.Н., Свирид А.Э., Уксусников А.Н., Устюгов Ю.М., Гундеров Д.В. Влияние термомеханической обработки на структурно-фазовые превращения в сплаве Cu-14Al-3Ni с эффектом памяти формы, подвергнутом кручению под высоким давлением // ФММ. 2018. Т. 119. № 4. С. 393–401.
  15. Свирид А.Э., Лукьянов А.В., Пушин В.Г., Белослудцева Е.С., Куранова Н.Н., Пушин А.В. Влияние температуры изотермической осадки на структуру и свойства сплава Cu-14мас.%Al-4 мас.%Ni с эффектом памяти формы // ФММ. 2019. Т. 120. С. 1257–1263.
  16. Свирид А.Э., Пушин В.Г., Куранова Н.Н., Белослудцева Е.С., Пушин А.В., Лукьянов А.В. Эффект пластификации сплава Cu-14Al-4Ni с эффектом памяти формы при высокотемпературной изотермической осадки // Письма в ЖТФ. 2020. Т. 46. C. 19–22.
  17. Свирид А.Э., Лукьянов А.В., Пушин В.Г., Куранова Н.Н., Макаров В.В., Пушин А.В., Уксусников А.Н. Применение изотермической осадки для мегапластической деформации β-сплавов Cu-Al-Ni // ЖТФ. 2020. Т. 90. С. 1088–1094.
  18. Свирид А.Э., Куранова Н.Н., Пушин В.Г., Афанасьев С.В. Особенности структуры метастабильных сплавов на основе Cu–Zn // ФММ. 2024. Т. 125. № 7. С. 821–830.
  19. Kajiwara S. Strain-induced martensite structures of a Cu-Zn alloy // J. Phys. Soc. Japan. 1971. V. 30. P. 1757.
  20. Hull D. Spontaneous Transformation of Metastable p-brass in Thin Foils // Philosophical Magazine. 1961. V. 7. P. 537–550.
  21. Lohan N.M., Pricop B., Burlacu L., Bujoreanu L.-G. Using DSC for the detection of diffusion-controlled phenomena in Cu-based shape memory alloys // J. Therm Anal Calorium. 2018. V. 131. P. 215–224.
  22. Свирид А.Э., Пушин В.Г., Макаров В.В., Куранова Н.Н. Влияние высокотемпературной термомеханической обработки на микроструктуру и механические свойства сплава Cu–Al–Ni–(B) с термоупругим мартенситным превращением // ФММ. 2023. Т. 124. С. 635–643.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. X-ray diffraction patterns of Cu–41%Zn alloy after quenching (a), hot rolling with 90% reduction (b), subsequent annealing at 120°C for 5 min (c) or 200°C for 2 h (d) and the corresponding hkl reflection bar diagrams of the α(FCC), 3R, 9R and β(BCC) phases.

Download (312KB)
3. Fig. 2. OM (a, b) and SEM (c, d) images of the microstructure of the Cu–41%Zn alloy after hot rolling with a reduction of 90% and quenching in water. In the OM images, the α grains are lighter in contrast. In the SEM images, the α grains are darker, and the 3R/9R grains located between them are light. The unidirectional structure of bainite is indicated by arrows (d).

Download (505KB)
4. Fig. 3. Deformation curves σ–δ of the Cu–41%Zn alloy after hot rolling with quenching (curve 1) and subsequent annealing at 200°C for 2 h (curve 2).

Download (91KB)
5. Fig. 4. OM images of the microstructure of the Cu–41%Zn alloy after hot rolling with quenching (a) and annealing at 200°C for 2 h (b).

Download (210KB)
6. Fig. 5. Bright-field TEM images (a, b) and the corresponding electron diffraction pattern (a – inset – zone axis [112]) of the α-phase of the Cu–41%Zn alloy after hot rolling and water quenching. Arrows indicate the β′-particles of the β-phase enriched in Zn in the images of dislocation slip bands.

Download (265KB)
7. Fig. 6. DSC curves of the Cu–41%Zn alloy after quenching (curve 1) and hot rolling with quenching (2).

Download (100KB)