Phase composition and structure of Al–Cu–Mn–Mg–Zn–Fe–Si alloys containing 2% Cu and 1.5% Mn

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Calculations and experimental methods are used to study the collective and individual effect of Zn, Mg, Fe, and Si additions on the phase composition and structure of cast and cold-rolled aluminum alloys containing 2% Cu and 1.5% Mn. The combined additions of these elements of more than 3% to the base alloy were found to allow the mechanical properties of cold-rolled alloys to be kept at a level of properties of deformed base alloy despite the substantial complication of the phase composition. This largely is due to the completely fixing iron into the eutectic inclusions of the Al15(Fe,Mn)3Si2 phase. From this, it follows the fundamental possibility of using a variety of secondary raw materials for the preparation of this alloy, which does not require homogenizing and quenching.

Full Text

Restricted Access

About the authors

K. A. Tsydenov

National University of Science and Technology MISiS

Author for correspondence.
Email: kirillcydenov@yandex.ru

кафедра обработки металлов давлением

Russian Federation, Moscow, 119049

N. A. Belov

National University of Science and Technology MISiS

Email: kirillcydenov@yandex.ru

кафедра обработки металлов давлением

Russian Federation, Moscow, 119049

References

  1. Jaunky V.C. Are Shocks To Aluminium Consumption Transitory Or Permanent? // Rev. Appl. Economics. 2013. V. 9. P. 21–37.
  2. Babcsán N. Aluminium infinite green circular economy–theoretical carbon free infinite loop, combination of material and energy cycles // Solutions for Sustainable Development. CRC Press. 2019. P. 205–210.
  3. Brough D., Jouhara H. The aluminium industry: A review on state-of-the-art technologies, environmental impacts and possibilities for waste heat recovery // Intern. J. Thermofluids. 2020. V. 1. P. 100007.
  4. Ashkenazi D. How aluminum changed the world: A metallurgical revolution through technological and cultural perspectives // Techn. Forec. Soc. Change. 2019. V. 143. P. 101–113.
  5. Pedneault J., Majeau‐Bettez G., Pauliuk S., Margni M. Sector‐specific scenarios for future stocks and flows of aluminum: An analysis based on shared socioeconomic pathways // J. Industrial Ecology. 2022. V. 26. № 5 P. 1728–1746.
  6. Sivanur K., Umananda K.V., Pai D. Advanced materials used in automotive industry-a review // AIP Conference Proceedings. 2021. V. 2317. № 1. P. 020032.
  7. Zheng K., Politis D.J., Wang L., Lin J.A. Review on forming techniques for manufacturing lightweight complex–shaped aluminium panel components // Intern. J. Lightweight Mater. Manufacture. 2018. V. 1. № 2. P. 55–80.
  8. Kermanidis A.T. Aircraft aluminum alloys: Applications and Future Trends // Revolutionizing Aircraft Mater. Processes. 2020. P. 21–55.
  9. Yang C., Zhang L., Chen Z., Gao Y., Xu Z. Dynamic material flow analysis of aluminum from automobiles in China during 2000–2050 for standardized recycling management // J. Cleaner Production. 2022. V. 337. P. 130544.
  10. Zhao Y., Zhang W., Yang C., Zhang D., Wang Z. Effect of Si on Fe-rich intermetallic formation and mechanical properties of heat-treated Al–Cu–Mn–Fe alloys // J. Mater. Research. 2018. V. 33. № 8. P. 898–911.
  11. Belov N.A., Cherkasov S.O., Korotkova N.O., Yakovleva A.O., Tsydenov K.A. Effect of Iron and Silicon on the Phase Composition and Microstructure of the Al-2% Cu-2% Mn (wt%) Cold Rolled Alloy // Phys. Met. Metallogr. 2021. V. 122. P. 1095–1102.
  12. Belov N.A., Akopyan T.K., Korotkova N.O., Cherkasov S.O., Yakovleva A.O. Effect of Fe and Si on the phase composition and microstructure evolution in alloy Al-2wt.%Cu-2wt.%Mn during solidification, cold rolling and annealing // JOM. 2021. V. 16. № 1. P. 3827–3837.
  13. Belov N.A., Akopyan T.K., Shurkin P.K., Korotkova N.O. Comparative analysis of structure evolution and thermal stability of experimental AA2219 and model Al-2wt.%Mn-2wt.%Cu cold rolled alloys // J. Alloys Compounds. 2021. V. 864. P. 158823.
  14. Mondol S., Alam T., Banerjee R., Kumar S., Chattopadhyay K. Development of a high temperature high strength Al alloy by addition of small amounts of Sc and Mg to 2219 alloy // Mater. Sci. Eng. A. 2017. V. 687. P. 221–231.
  15. He H., Yi Y., Huang S., Zhang Y. Effects of cold predeformation on dissolution of second-phase Al2Cu particles during solution treatment of 2219 Al–Cu alloy forgings // Mater. Charact. 2018. V. 135. P. 18–24.
  16. Shakiba M., Parson N., Chen X.-G. Hot deformation behavior and rate-controlling mechanism in dilute Al–Fe–Si alloys with minor additions of Mn and Cu // Mater. Sci. Eng. A. 2015. V. 636. P. 572–581.
  17. Sakow S., Tokunaga T., Ohno M., Matsuura K. Microstructure refinement and mechanical properties improvement of Al-Si-Fe alloys by hot extrusion using a specially designed high-strain die // J. Mater. Process. Technol. 2020. V. 277. P. 1116447.
  18. Shakiba M., Parson N., Chen X.-G. Effect of homogenization treatment and silicon content on the microstructure and hot work ability of dilute Al–Fe–Si alloys // Mater. Sci. Eng. A. 2014. V. 619. P. 180–189.
  19. Belov N.A., Shurkin P.K., Korotkova N.O., Cherkasov S.O. The effect of heat treatment on the structure and mechanical properties of cold-rolled sheets made of Al–Cu–Mn alloys with varying copper to manganese ratios // Tsetnye Met. 2021. V. 9. P. 80–86.
  20. Korotkova N.O., Shurkin P.K., Cherkasov S.O., Aksenov A.A. Effect of Copper Concentration and Annealing Temperature on the Structure and Mechanical Properties of Ingots and Cold-Rolled Sheets of Al-2% Mn Alloy // Russian Journal of Non-Ferrous Metals. 2022. V. 63. № 2. P. 190–200.
  21. Belov N.A., Korotkova N.O., Akopyan T.K., Tsydenov K.A. Simultaneous Increase of Electrical Conductivity and Hardness of Al-1.5 wt.% Mn Alloy by Addition of 1.5 wt.% Cu and 0.5 wt.% Zr // Metals. 2019. V. 9. № 12. P. 1246.
  22. Information on http://www.thermocalc.com. Accessed 9 January 2024.
  23. Scheil E. Bemerkungen zur schichtkristallbildung // Intern. J. Mater. Research. 1942. V. 34. № 3. P. 70–72.
  24. Pelton A.D., Eriksson G., Bale C.W. Scheil–Gulliver constituent diagrams // Metal. Mater. Trans. A. 2017. V. 48. P. 3113–3129.
  25. Золоторевский В.С., Белов Н.А. Металловедение литейных алюминиевых сплавов. МИСиС, 2005. 376 с.
  26. Bäckerud L., Chai G., Tamminen J. Solidification characteristics of aluminum alloys, Volume 1: Foundry Alloys, first ed. Oslo: Skanaluminium, 1986. 159 p.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Polythermal sections of the Al–Cu–Mn–Fe–Si–Mg–Zn system at 2%Cu, 1.5%Mn, 0.4%Fe and 0.4%Si: (a) at 1%Zn; (b) at 1%Mg.

Download (79KB)
3. Fig. 2. Polythermal sections of the Al–Cu–Mn–Fe–Si–Mg–Zn system at 2%Cu, 1.5%Mn, 1%Mg and 1%Zn: (a) at 0.4%Si, (b) at 0.4%Fe.

Download (114KB)
4. Fig. 3. Calculated dependences of the mass fraction of solid phases (Q) on temperature during nonequilibrium crystallization for experimental alloys (see Table 1): (a) A-0; (b) A-1; (c) A-2; (d) A-3. For phase designations, see Figs. 1, 2.

Download (60KB)
5. Fig. 4. Microstructure of ingots of experimental alloys, SEM: (a) A-0; (b) A-1; (c) A-2; (d) A-3.

Download (62KB)
6. Fig. 5. Maps of the distribution of elements in the microstructure of the A-3 alloy ingot, MRSA.

Download (89KB)
7. Fig. 6. Isothermal sections of the Al–Cu–Mn–Mg–Zn (a), Al–Cu–Mn–Fe–Si (b) and Al–Cu–Mn–Fe–Si–Mg–Zn (c, d) systems at 2%Cu, 1.5%Mn and 400°C: c) at 0.5%Fe and 0.4%Si; d) at 1% Mg and 1% Zn.

Download (111KB)
8. Fig. 7. Microstructure of cold-rolled sheets of experimental alloys after annealing at 400°C, SEM: (a) A-0; (b) A-1; (c) A-2; (d) A-3.

Download (88KB)
9. Fig. 8. Al20Cu2Mn3 dispersoids in the structure of annealed cold-rolled sheet of A-2 alloy, TEM: (a), (c) bright-field images; (b) dark-field image in the Al20Cu2Mn3 reflection.

Download (52KB)