Structural and phase transformations and crystallographic texture in industrial Ti–6Al–4V alloy with globular morphology of α-phase grains: plate’s transverse section along rolling direction

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The industrial Ti–6Al–4V alloy, obtained almost in the single-phase α state by the thermomechanical treatment including hot rolling, is studied by the methods of X-ray diffraction analysis, optical and transmission and scanning orientation electron microscopy. It is revealed that the layered fine-grained microstructure in the plate’s transverse section (TD) along the rolling direction (RD) is characterized both in the rolling plane (ND) and in the transverse section perpendicular to the RD by the texture selection and consistent distribution of globular α grains over the orientation Burgers relations and twinning orientations. The special crystallographic orientation of α grains and the mechanisms of generation of microtexture regions in the studied plate’s transverse section (TD) of the alloy correlate with the similar data established for the plate in the plane (ND) and in the transverse section. The results obtained in three mutually orthogonal sections of the plate agree with each other, determining the texture of the globular α phase.

Full Text

Restricted Access

About the authors

V. G. Pushin

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences; Institute of Continuous Media Mechanics, Ural Branch, Russian Academy of Sciences

Author for correspondence.
Email: pushin@imp.uran.ru
Russian Federation, Ekaterinburg, 620108; Perm, 614013

D. Yu. Rasposienko

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Email: pushin@imp.uran.ru
Russian Federation, Ekaterinburg, 620108

Yu. N. Gornostyrev

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences; Institute of Continuous Media Mechanics, Ural Branch, Russian Academy of Sciences

Email: pushin@imp.uran.ru
Russian Federation, Ekaterinburg, 620108; Perm, 614013

N. N. Kuranova

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Email: pushin@imp.uran.ru
Russian Federation, Ekaterinburg, 620108

V. V. Makarov

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Email: pushin@imp.uran.ru
Russian Federation, Ekaterinburg, 620108

A. E. Svirid

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Email: pushin@imp.uran.ru
Russian Federation, Ekaterinburg, 620108

O. B. Naimark

Institute of Continuous Media Mechanics, Ural Branch, Russian Academy of Sciences

Email: pushin@imp.uran.ru
Russian Federation, Perm, 614013

A. N. Balakhnin

Institute of Continuous Media Mechanics, Ural Branch, Russian Academy of Sciences

Email: pushin@imp.uran.ru
Russian Federation, Perm, 614013

V. A. Oborin

Institute of Continuous Media Mechanics, Ural Branch, Russian Academy of Sciences

Email: pushin@imp.uran.ru
Russian Federation, Perm, 614013

References

  1. Цвиккер У. Титан и его сплавы. М.: Мир, 1979. 512 с.
  2. Полькин И.С. Упрочняющая термическая обработка титановых сплавов. М.: Металлургия, 1984. 96 с.
  3. Ильин А.А. Механизм и кинетика фазовых и структурных превращений в титановых сплавах. М.: Наука, 1994. 304 с.
  4. Пушин В.Г., Кондратьев В.В., Хачин В.Н. Предпереходные явления и мартенситные превращения. Екатеринбург: УрО РАН, 1998. 368 с.
  5. Peters M., Kumpfert J., Ward C.H. Leyens C. Titanium alloys for aerospace applications // Adv. Eng. Mater. 2003. V. 5. № 6. P. 419–427.
  6. Banerjee D., Williams J.C. Perspectives of titanium science and technology // Acta Mater. 2013. V. 61. P. 844–879.
  7. Котов А.Д., Михайловская А.В., Мослех А.О., Пурсело Т.П., Просвиряков А.С., Портной В.К. Сверхпластичность ультрамелкозернистого титанового сплава Ti-4% Al-1% V-3% Mo // ФММ. 2019. Т. 120. № 1. С. 63–72.
  8. Mosheh A.O., Mikhaylovskaya A.V., Kotov A.D., Kwame J.S., Aksenov S.A. Superplasticity of Ti-6Al-4V titanium alloy: macrostructure evolution and constitutive modelling // Materials. 2019. V. 12. P. 1756.
  9. Bonisch M., Panigrahi A., Stoica M., Calin M., Ahrens E., Zehetbauer M., Skrotzki M., Eckert J. Giant thermal expansion and α-precipitation pathways in Ti-alloys // Nature Comm. 2017. V. 8. P. 1429.
  10. Evans W.J., Gostelow C.R. The effect of hold time on the fatigue properties of a β-processed titanium alloy // Metall. Trans. A. 1979. V. 10. P. 1837–1846.
  11. Evans W.J., Bache M.R. Dwell-sensitive fatigue under biaxial loads in the near-alpha titanium alloy IMI685 // Int. J. Fatig. 1994. V. 16. P. 443–452.
  12. Bache M., Cope M., Davies H., Evans W., Harrison G. Dwell sensitive fatigue in a near alpha titanium alloy at ambient temperature // Int. J. Fatigue. 1997. V. 19(93). P. 83–88.
  13. Bache M.R. A review of dwell sensitive fatigue in titanium alloys: the role of microstructure, texture and operating conditions // Int. J. Fatig. 2003. V. 25. P. 1079–1087.
  14. Sinha V., Mills M.J., Williams J.C. Understanding the contributions of normal-fatigue and static loading to the dwell fatigue in a near-alpha titanium alloy // Metall. Mater. Trans. A. 2004. V. 35. № 10. P. 3141–3148.
  15. Tympel P.O., Lindley T.C., Saunders E.A., Dixon M., Dye D. Influence of complex LCF and dwell load regimes on fatigue of Ti-6Al-4V //Acta Mater. 2016. V. 103. P. 77–88.
  16. Toubal L., Bocher P., Moreau A. Dwell-fatigue life dispersion of a near alpha titanium alloy // Int. J. of Fatigue. 2009. V. 31. P. 601–605.
  17. Pilchack A.L. Fatigue crack growth rates in alpha titanium: Faceted vs. striation growth // Scripta Mater. 2013. V. 68. P. 277–280.
  18. Pilchack A.L. A simple model to account for the role of microtexture on fatigue and dwell fatigue lifetimes of titanium alloys // Scripta Mater. 2014. V. 74. P. 68–71.
  19. Cuddihy M.A., Stapleton A., Williams S., Dunne F.P.E. On cold dwell facet fatigue in titanium alloy aero-engine components // Int. J. Fatig. 2017. V. 97. P. 177–189.
  20. Xu Y., Joseph S., Karamched P., Fox K., Rugg D., Dunne F.P.E., Dye D. Predicting dwell fatigue life in titanium alloys using modelling and experiment // Nature communications. 2020. V. 11. P. 5868.
  21. Hu Z., Zhou X., Liu H., Yi D. The formation of microtextured region during thermo-mechanical processing in a near-β titanium alloy Ti-5Al-5Mo-5V-1Cr-1Fe // J. All. Comp. 2021. V. 853. P. 156964.
  22. Rezaei M., Zarei-Hanzaki A., Anousheh A.S., Abedi H.R., Pahlevani F., Hossain R., Sahajwalla V., Berto F. On the damage mechanisms during compressive dwell-fatigue of β-annealed Ti-6242S alloy // Int. J. Fatig. 2021. V. 146. P. 106158.
  23. Britton T.B., Birosca S., Preuss, M., Wilkinson A.J. Electron backscatter diffraction study of dislocation content of a macrozone in hot-rolled Ti-6Al-4V alloy // Scr. Mater. 2010. V. 62. № 9. P. 639–642.
  24. Littlewood P.D., Wilkinson A.J. Local deformation patterns in Ti-6Al-4V under tensile, fatigue and dwell fatigue loading // Int. J. Fatigue. 2012. V. 43. P. 111–119.
  25. Warwick J.L.W., Jones N.G., Bantounas I., Preuss M., Dye D. In-situ observation of texture and microstructure evolution during rolling and globularisation on Ti-6Al-4V // Acta Mater. 2013. V. 61. Р. 1603–1615.
  26. Kulkarni G., Hiwarkar V., Singh R. Texture evolution of Ti6Al4V during cold deformation // Int. J. Materials, Mechanics and Manufacturing. 2019. V. 7. № 6. P. 250–253.
  27. Muth A., John R., Pilchak A., Kalidindi S.R., McDowell D.L. Analysis of Fatigue Indicator Parameters for Ti-6Al-4V microstructures using extreme value statistics in the transition fatigue regime // Int. J. of Fatigue. 2021. V. 153. P. 106441.
  28. Modina I.M., Dyakonov G.S., Stotskiy A.G., Yakovleva T.V., Semenova I.P. Effect of the texture of the ultrafine-grained Ti-6Al-4V titanium alloy on impact toughness // Materials. 2023. V. 16. P. 1318.
  29. Bohemen S.M.C., Kamp A., Petrov R.N., Kestens L.A.I., Sietsma J. Nucleation and variant selection of secondary α-plates in β Ti alloy // Acta Mater. 2008. V. 56. P. 5907–5914.
  30. Naimark O., Bayandin Yu., Uvarov S., Bannikova I., Saveleva N. Critical Dynamics of Damage-Failure Transition in Wide Range of Load Intensity // Acta Mechanica. 2021. V. 232. P. 1943–1959.
  31. Naimark O., Oborin V., Bannikov M., Ledon D. Critical Dynamics of Defects and Mechanisms of Damage-Failure Transitions in Fatigue // Materials. 2021. V. 14. № 10. P. 2554.
  32. Oborin V., Balakhnin A., Naimark O., Gornostyrev Y., Pushin V., Kuranova N., Rasposienko D., Svirid A., Uksusnikov A. Damage-failure transition in titanium alloy Ti-6Al-4V under dwell fatigue loads // Fratturaed Integrità Strutturale. 2024. V. 18. № 67. P. 217–230.
  33. Пушин В.Г., Распосиенко Д.Ю., Горностырев Ю.Н., Куранова Н.Н., Макаров В.В., Марченкова Е.Б., Свирид А.Э., Наймарк О.Б., Балахнин А.Н., Оборин В.А. Структурно-фазовые превращения и кристаллографическая текстура в промышленном сплаве Ti-6Al-4V с глобулярной морфологией зерен α-фазы. Плоскость прокатки // ФММ. 2024. Т. 125. № 6. С. 686–698.
  34. Пушин В.Г., Распосиенко Д.Ю., Горностырев Ю.Н., Куранова Н.Н., Макаров В.В., Свирид А.Э., Наймарк О.Б., Балахнин А.Н., Оборин В.А. Структурно-фазовые превращения и кристаллографическая текстура в промышленном сплаве Ti-6Al-4V с глобулярной морфологией зерен α-фазы. Поперечное сечение плиты, перпендикулярное направлению прокатки // ФММ. 2024. Т. 125. № 7. С. 795–807.
  35. Laine S. The role of twinning deformation of α-phase titanium. Cambridge: University of Cambridge, 2017. 224 p.
  36. Neumann P. Representation of orientations of symmetrical objects by Rodrigues vectors // Textures and Microstructures. 1991. V. 14–18. P. 53–58.
  37. Morawiec A. Orientations and rotations: computations in crystallographic textures. Berlin: Springer-Verlag, 2004. 200 p.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. X-ray diffraction pattern obtained in the cross-section (TD) of the plate along the rolling direction RD of the Ti–6Al–4V alloy and bar diagrams of the α- and β-phase reflexes.

Download (30KB)
3. Fig. 2. OM- (a) and SEM SE-images of the structure (c) in the plate cross-section (TD) and histograms of the α-grain size distribution (b, d, d). The directions of the normals to the rolling planes (ND) and transverse (TD) and (RD) sections are indicated.

Download (129KB)
4. Fig. 3. Experimental (a) and simulated (b) histograms of the distribution of the angle of misorientation of α-crystallites in the cross section (TD) of the alloy plate. The solid black line corresponds to the experimental histogram, the thick solid red line corresponds to the total Gaussian function, consisting of the Gaussian functions for the Burgers o.s. (solid thin lines) and for twin orientations (dashed lines).

Download (28KB)
5. Fig. 4. DOE map and color scale in Euler angles (a) and Rodriguez–Frank color diagram of α-crystallite rotations depending on Euler angles (b) in the cross section (TD) of the alloy plate.

Download (112KB)
6. Fig. 5. The EBSD analysis map (a), enlarged fragments with orientation designation in the colors of the OPF and projections of the unit cell of the α-phase (b, c) and the standard stereographic triangle of the OPF of the hcp lattice (d) in the cross-section (TD) of the alloy plate.

Download (208KB)
7. Fig. 6. DOE maps of the α-grain size distribution (a) and its enlarged fragments (b–d) of the grain-subgrain structure in the cross-section (TD) of the alloy plate (b–d).

Download (157KB)
8. Fig. 7. DOES maps (a, b, c), integral map (a) and the corresponding PPF (g), as well as PPF with one highlighted pole (d, e), which correspond to DOES maps in the figures (b, c) in the cross-section (TD) of the alloy plate.

Download (104KB)
9. Fig. 8. Typical triangles of the OPF in three projections X, Y, Z for the cross-section (Z||TD) of the alloy plate.

Download (19KB)
10. Fig. 9. Light- (a) and dark-field (b–c reflection 101) TEM images of α-grains and the corresponding electron diffraction pattern and its diagram (c, reciprocal lattice plane (121)). Cross-section of the plate (TD). The dislocation substructure of the MG of the α-phase is visible in the TEM images near the intercrystallite boundaries.

Download (55KB)