Electron beam impact on microstructure and microhardness of Ti–6Al–4V titanium alloy produced by wire electron-beam additive manufacturing technology and selective laser alloying at simulation of electronic-beam welding

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The microstructure and phase composition of Ti–6Al–4V alloy specimens produced by wire electron beam additive manufacturing (EBAM) technology and selective laser melting (SLM) method after exposure to an electron beam, simulating electron-beam welding, have been investigated by X-ray diffraction analysis, optical metallography, and transmission electron microscopy. In the electron beam exposure zone of SLM specimens, in contrast to EBAM specimens, it was observed that the transverse dimensions of anisotropic primary β grains and α/α′ phase plates increased and inside α/α′ phase plates, submicrocrystalline α phase grains and nanocrystalline α′′ phase were formed. The different character of microstructure and, accordingly, microhardness changes in the weld zone and heat-affected zone in comparison with the base metal is caused by the different cooling rate of the melt bath in the weld zones of EBAM and SLM specimens. In the SLM specimen, the cooling rate of the melt bath is less than that observed in the EBAM specimen. This discrepancy can be attributed to the fact that due to the finer needle-like α′ martensitic structure, the thermal conductivity in the base metal of the SLM sample is less than that in the base metal of the EBAM sample.

Full Text

Restricted Access

About the authors

O. B. Perevalova

Institute of Strength Physics and Materials Science, Siberian Branch, Russian Academy of Sciences

Author for correspondence.
Email: perevalova52@mail.ru
Russian Federation, Tomsk, 634055

A. V. Panin

Institute of Strength Physics and Materials Science, Siberian Branch, Russian Academy of Sciences; National Research Polytechnic University

Email: perevalova52@mail.ru
Russian Federation, Tomsk, 634055; Tomsk, 634050

M. S. Kazachenok

Institute of Strength Physics and Materials Science, Siberian Branch, Russian Academy of Sciences

Email: perevalova52@mail.ru
Russian Federation, Tomsk, 634055

S. A. Martynov

Institute of Strength Physics and Materials Science, Siberian Branch, Russian Academy of Sciences

Email: perevalova52@mail.ru
Russian Federation, Tomsk, 634055

References

  1. Глазунов С.Г., Моисеев В.Н. Конструкционные титановые сплавы. М.: Металлургия, 1974. 368с.
  2. Akula S.P., Ojha M., Rao K.L., Gupta A.K. A review on superplastic forming of Ti-6Al-4V and other titanium alloys // Mater. Today Comm. 2023. V. 34. P. 105343.
  3. Zhang T., Liu Ch.-T. Design of titanium alloys by additive manufacturing: A critical review // Adv. Powder Mater. 2022. V. 1. P. 100014.
  4. Rae W., Lomas Z., Jackson M., Rahimi S. Measurements of residual stress and microstructural evolution in electron beam welded Ti-6Al-4V using multiple techniques // Mater. Characterization. 2017. V. 132. P. 10–19.
  5. Wang S., Wu X. Investigation on the microstructure and mechanical properties of Ti-6Al-4V alloy joins with electron beam welding // Mater. Design. 2012. V. 36. P. 663–670.
  6. Tsai C.J., Wang L.M. Improved mechanical properties of the Ti-6Al-4V alloy by electron beam welding process plus annealing treatments and its microstructural evolution // Mater. Design. 2014. V. 60. P. 587–598.
  7. Xu M., Chen Y., Zhang T., Xie J., Wang S., Yin L. Microstructure evolution and mechanical properties of wrought/wire arc additive manufactured Ti-6Al-4V joints by electron beam welding // Mater. Characterization. 2022. V. 190. P. 112090.
  8. Panin A.V., Kazachenok M.S., Panin S.V., Berto F. Scale levels of quasi-static and dynamic fracture behavior of Ti-6Al-4V parts built by various additive manufacturing methods // Theoret. Appl. Fracture Mechan. 2020. V. 110. P. 102781.
  9. Панин А.В., Казаченок М.С., Круковский К.В., Казанцева Л.А., Мартынов С.А. Сравнительный анализ микроструктуры сварных соединений образцов Ti-6Al-4V, полученных прокаткой и методом проволочной электронно-лучевой аддитивной технологии // Физическая мезомех. 2023. Т. 26. № 4. С. 64–78.
  10. Перевалова О.Б., Панин А.В., Казаченок М.С. Влияние охлаждения подложки на микроструктуру и фазовый состав изделий из титанового сплава Ti-6Al-4V, полученных методами аддитивных технологий // Журнал технич. физики. 2020. Т. 90. Вып. 3. С. 410–418.
  11. Panin A., Martynov S., Kazachenok M., Kazantseva L., Bakulin A., Kulkova S., Perevalova O., Sklyarova E. Effects of water cooling on the microstructure of electron beam additive-manufacted Ti-6Al-4V // Metals. 2021. V. 11. P. 1742–1757.
  12. Боянгин Е.Н., Перевалова О.Б., Панин А.В., Мартынов С.А. Влияние электронно-лучевой сварки на микроструктуру и микротвердость 3D-напечатанных изделий из титанового сплава Ti-6Al-4V // ФММ. 2021. Т. 122. № 2. С. 152–158.
  13. Kazantseva N., Krakhmalev P., Thuvander M., Yadroitsev I., Vinogradova N., Ezhov I. Martensitic transformations in Ti-6Al-4V (ELI) alloy manufactured by 3D printing // Mater. Characterization. 2018. V. 146. P. 101–112.
  14. Xu W., Lui E.W., Pateras A., Qian M., Brandt M. In situ tailoring microstructure in additively manufactured Ti-6Al-4V for superior mechanical performance // Acta Mater. 2017. V. 125. P. 390–400.
  15. Горелик C.С., Расторгуев Л.Н., Скаков Ю.А. Рентгенографический и электронно-оптический анализ. М.: Металлургия, 1970. 328 c.
  16. Gao Yu-kui. Surface modification of TC4 titanium alloy by high current pulsed electron beam (HCPEB) with different pulsed energy densities // J. Alloys Compounds. 2013. V. 572. P. 180–185.
  17. Zhang X.D., Zou J.X., Weber S., Hao S.Z., Dong C., Grosdider T. Microstructure and property modifications in a near α-Ti alloy induced by pulsed electron beam surface treatment // Surf. Coat. Technol. 2011. V. 206. P. 295–304.
  18. Broderick T.F., Jackson A.G., Jones H., Froes F.H. The effect of cooling conditions on the microstructure of rapidly solidified Ti-6Al-4V // Metal. Trans. A. 1985. V. 16A. P. 1951–1959.
  19. Li Z., Zhao S., Wang B., Cui S., Chen R., Valiev R.Z., Meyers M.A. The effects of ultra-fine-grained structure and cryogenic temperature on adiabatic shear localization in titanium // Acta Materi. 2019. V. 181. P. 408–422.
  20. Kazantseva N.V., Krakhmalev P.V., Yadroitsava I.A., Yadroitsev I.A. Laser additive 3D printing of titanium alloys: current status, problems, trends // Phys. Met. Metal. 2021. V. 122. № 1. P. 6–25.
  21. Прядко Т.В. Особенности гидрирования сплавов системы Ti–V // Металлофизика. Новейшие технологии. 2015. Т. 37. № 2. С. 243–255.
  22. Davis R., Flower H.M., West D.R.F. Martensitic transformations in Ti-Mo alloys // J. Mater. Sci. 1979. V. 14. P. 712–722.
  23. Козлов Э.В., Попов Л.Е. Дислокации, антифазные границы и пластическая деформация упорядоченных сплавов // Изв. Вузов. Физика. 1967. № 10. С. 102–111.
  24. Garcia-Gonzalez M., van Petegem S., Baluc N., Dupraz M., Honkimaki V., Lalire F., van Swygenhoven H. Influence of thermo-mechanical history on the kinetics in 18 carat Au alloys // Acta Mater. 2020. V. 191. P. 186–197.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Optical images of the structure of simulated welded seams in cross sections of samples obtained using ELAT (a) and SLS technology (b).

Download (27KB)
3. Fig. 2. Optical images of the microstructure of primary β-grains in the weld zone (a), heat-affected zone (b), and BM (c) in a Ti–6Al–4V alloy sample obtained using ELAT.

Download (51KB)
4. Fig. 3. Optical images of the microstructure of primary β-grains in the weld zone (a), heat-affected zone (b), and BM (c) in a Ti–6Al–4V alloy sample obtained using SLS technology.

Download (55KB)
5. Fig. 4. Bright-field electron microscopic images of the microstructure in the OM (a) and SS (b) zones in the SLS sample.

Download (20KB)
6. Fig. 5. Electron microscopic images of the microstructure of the SLS sample in the SS zone: a — bright field, b — microdiffraction, c — dark field in reflection 003 of the zone axis [110] α″, d — dark field in coinciding reflections 111 of the zone axis [110] α″ and 101 α.

Download (26KB)
7. Fig. 6. Distribution of microhardness in cross sections of Ti–6Al–4V alloy samples obtained using ELAT (1) and SLS (2).

Download (21KB)