Collapse of the inverse magnetocaloric effect in the ni47mn40sn13 alloy in cyclic magnetic fields
- Авторлар: Gamzatov A.G.1, Batdalov A.B.1, Aliev A.M.1
-
Мекемелер:
- Amirkhanov Institute of Physics, DFRC
- Шығарылым: Том 125, № 12 (2024)
- Беттер: 1471-1476
- Бөлім: ЭЛЕКТРИЧЕСКИЕ И МАГНИТНЫЕ СВОЙСТВА
- URL: https://innoscience.ru/0015-3230/article/view/681044
- DOI: https://doi.org/10.31857/S0015323024120013
- EDN: https://elibrary.ru/IJRJQA
- ID: 681044
Дәйексөз келтіру
Аннотация
The results of direct measurements for the adiabatic temperature change ΔTad in the Ni47Mn40Sn13 alloy in cyclic magnetic fields by the magnetic field modulation method are presented. In the temperature dependence of the magnetocaloric effect (MCE), direct (ΔTad > 0) and inverse (ΔTad < 0) MCE are detected. The inverse effect value in a cyclic magnetic field depends on the temperature scanning rate. An increase in the frequency of a cyclic magnetic field with an induction of 1.2 T from 1 to 30 Hz decreases the direct effect value by more than 2 times. In a cyclic magnetic field with an induction of 1.2 T at frequencies f ≥1 Hz, complete disappearance (“collapse”) is observed for the inverse magnetocaloric effect, while ΔТad during the one-time actuation of magnetic field is –0.49 K. The dependence of the inverse effect value on the temperature scanning rate, along with its strong frequency dependence, results from both the manifestation of irreversibility in the magnetostructural phase transition due to hysteresis and the presence of phase inhomogeneities influencing the phase transition kinetics.
Негізгі сөздер
Толық мәтін

Авторлар туралы
A. Gamzatov
Amirkhanov Institute of Physics, DFRC
Хат алмасуға жауапты Автор.
Email: gamzatov_adler@mail.ru
Ресей, Makhachkala
A. Batdalov
Amirkhanov Institute of Physics, DFRC
Email: gamzatov_adler@mail.ru
Ресей, Makhachkala
A. Aliev
Amirkhanov Institute of Physics, DFRC
Email: gamzatov_adler@mail.ru
Ресей, Makhachkala
Әдебиет тізімі
- Krenke T., Duman E., Acet M., Wassermann E.F., Moya X., Mañosa L. & Planes A. Inverse magnetocaloric effect in ferromagnetic Ni–Mn–Sn alloys // Nature Mater. 2005. V. 4. P. 450–454.
- Liu J., Gottschall T., Skokov K.P., Moore J.D. & Gutfleisch O. Giant magnetocaloric effect driven by structural transitions // Nature Mater. 2012. V. 11. P. 620–626.
- Соколовский В.В., Мирошкина О.Н., Бучельников В.Д., Марченков В.В. Магнитокалорический эффект в металлах и сплавах // ФММ. 2022. T. 123. № 4. С. 339–343.
- Khovaylo V.V., Skokov K.P., Gutfleisch O., Miki H., Kainuma R., Kanomata T. Reversibility and irreversibility of magnetocaloric effect in a metamagnetic shape memory alloy under cyclic action of a magnetic field // Appl. Phys. Lett. 2010. V. 97. P. 052503.
- Law J.Y., Moreno-Ramírez L.M., Díaz-García Á., Franco V. Current perspective in magnetocaloric materials research // J. Appl. Phys. 2023. V. 133. P. 040903.
- Gamzatov A.G., Aliev A.M., Varzanah A.G., Kameli P., Sarsari I.A., and Yu S.C. Inverse-direct magnetocaloric effect crossover in Ni47Mn40Sn12.5Cu0.5 Heusler alloy in cyclic magnetic fields // Appl. Phys. Lett. 2018. V 113. P. 172406.
- Varzaneh A.Gh., Kameli P., Sarsari I.A., Zavareh M.G., Mejia C.S., Amiri T., Skourski Y., Luo J.L., Etsell T.H., Chernenko V.A. Magnetic and magnetocaloric properties of Ni47Mn40Sn13−xZnx alloys: Direct measurements and first-principles calculations // Phys. Rev. B. 2020. V. 101. P. 134403.
- Kitanovski A. Energy applications of magnetocaloric materials // Adv. Energy Mater. 2020. V. 10. P. 1903741.
- Zhong Z., Ma S., Wang D., Du Y. A Review on the Regulation of Magnetic Transitions and the Related Magnetocaloric Properties in Ni–Mn–Co–Sn Alloys // J. Mater. Sci. Technol. 2012. V. 28. P. 193–199.
- Gottschall T., Skokov K.P., Scheibel F., Acet M., Zavareh M. Ghorbani, Skourski Y., Wosnitza J., Farle M., and Gutfleisch O. Dynamical Effects of the Martensitic Transition in Magnetocaloric Heusler Alloys from Direct ΔTad Measurements under Different Magnetic-Field-Sweep Rates // Phys. Rev. Applied. 2016. V. 5. P. 024013.
- Aliev A.M., Gamzatov A.G. Magnetocaloric effect in manganites in alternating magnetic fields // J. Magn. Magn. Mater. 2022. V. 553. P. 169300.
- Zheng Z.G., Chen X.L., Liu J.Y., Wang H.Y., Da S., Qiu Z.G., Zeng D.C. Dynamical response of Gadolinium in alternating magnetic fields up to 9 Hz // International Journal of Refrigeration. 2023. V. 146. P. 100–107.
- Yusuke Hirayama, Ryo Iguchi, Xue-Fei Miao, Kazuhiro Hono, Ken-ichi Uchida. High-throughput direct measurement of magnetocaloric effect based on lock-in thermography technique // Appl. Phys. Lett. 2017. V. 111. P. 163901.
- Abdulkadirova N.Z., Gamzatov A.G., Kamilov K.I., Kadirbardeev A.T., Aliev A.M., Popov Y.F., Vorob'ev G.P., Gebara P. Magnetostriction and magnetocaloric properties of LaFe11.1Mn0.1Co0.7Si1.1 alloy: Direct and indirect measurements // J. Alloy. Compd. 2022. V. 929. P. 167348.
- Aliev А.M., Gamzatov A.G., Abdulkadirova N.Z., Gebara P. Magnetocaloric properties of La0.9Pr0.1Fe11.2Co0.7Si1.1 compound through direct measurements under cyclic magnetic fields up to 30 Hz // International J. Refrigeration. 2023. V. 151. P. 146–151.
- Qiao K., Wang J., Zuo S., Zhou H., Hao J., Liu Y., Hu F., Zhang H., Gamzatov A.G., Aliev A., Zhang C., Li J., Yu Z., Gao Y., Shen F., Ye R., Long Y., Bai X., Wang J., Sun J., Huang R., Zhao T., Shen B. Enhanced Performance of ΔTad upon Frequent Alternating Magnetic Fields in FeRh Alloys by Introducing Second Phases // ACS Appl. Mater. Interfaces. 2022. V. 14. P. 18293–18301.
- Gamzatov A.G., Batdalov A.B., Khizriev Sh.K., Aliev A.M., Varzaneh A.G., Kameli P. High frequency dependence of the magnetocaloric effect in the Ni47Mn40Sn13 alloy: direct measurement // J. Mater. Sci. 2023. V. 58. P. 8503–8514.
- Gamzatov A.G., Batdalov A.B., Khizriev Sh.K., Aliev A.M., Varzaneh A.G., Kameli P. The nature of the frequency dependence of the adiabatic temperature change in Ni50Mn28Ga22-x (Cu, Zn)x Heusler alloys in cyclic magnetic fields // J. Alloy. Compd. 2023. V. 965. P. 171451.
- Lovell E., Pereira A.M., Caplin A.D., Lyubina J., Cohen L.F. Dynamics of the first‐order metamagnetic transition in magnetocaloric La (Fe, Si) 13: Reducing hysteresis // Adv. Energ. Mater. 2015. V. 5(6). P. 1401639.
- Costa R.M., Lovell E., Almeida R., Pinto R.M.C., Cohen L.F., Pereira A.M., Araujo J.P., Belo J.H. Landau theory-based relaxational modelling of first-order magnetic transition dynamics in magnetocaloric materials // J. Phys. D: Appl. Phys. 2023. V. 56. P. 155001.
Қосымша файлдар
