Magnetic and Magnetocaloric Properties of Bulk and Rapidly Quenched GdTbDyHoEr high-entropy alloys

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The bulk GdTbDyHoEr magnetic high-entropy alloy is prepared by induction melting; the same alloy in the form of ribbons is prepared by rapid quenching from the melt. Peculiarities of the structure and magnetic and magnetocaloric properties of these materials are analyzed. The both states of the alloy are characterized by the hexagonal structure. The magnetic entropy change ΔSM is determined using measured magnetic isotherms and Maxwell’s relations. The maximum ΔSM is observed at 175 K and, for a magnetic field change of 2 T, it is 1.8 and 2.6 J/kg К for the bulk and rapidly quenched alloys, respectively. Taking into account the determined parameters of magnetocaloric effect, the alloys show promise as materials for applications in magnetic refrigeration devices.

Full Text

Restricted Access

About the authors

A. V. Svalov

Ural Federal University named after the First President of Russia B. N. Yeltsin

Author for correspondence.
Email: andrey.svalov@urfu.ru
Russian Federation, Ekaterinburg

D. S. Neznakhin

Ural Federal University

Email: andrey.svalov@urfu.ru
Russian Federation, Ekaterinburg

A. V. Arkhipov

Ural Federal University named after the First President of Russia B. N. Yeltsin

Email: andrey.svalov@urfu.ru
Russian Federation, Ekaterinburg

S. V. Andreev

Ural Federal University

Email: andrey.svalov@urfu.ru
Russian Federation, Екатеринбург

A. S. Rusalina

Ural Federal University

Email: andrey.svalov@urfu.ru
Russian Federation, Ekaterinburg

A. I. Medvedev

Institute of Electrophysics, Ural Branch, Russian Academy of Sciences

Email: andrey.svalov@urfu.ru
Russian Federation, Ekaterinburg

I. V. Beketov

Ural Federal University; Institute of Electrophysics, Ural Branch, Russian Academy of Sciences

Email: andrey.svalov@urfu.ru
Russian Federation, Ekaterinburg; Ekaterinburg

A. A. Pasynkova

Ural Federal University; Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Email: andrey.svalov@urfu.ru
Russian Federation, Ekaterinburg; Ekaterinburg

G. V. Kurlyandskaya

Ural Federal University

Email: andrey.svalov@urfu.ru
Russian Federation, Ekaterinburg

References

  1. Tishin A.M., Spichkin Y.I. The Magnetocaloric Effect and Its Applications. Series in Condensed Matter Physics. Institute of Physics Publishing, 2003.
  2. Соколовский В.В., Мирошкина О.Н., Бучельников В.Д., Марченков В.В. Магнитокалорический эффект в металлах и сплавах // ФММ. 2022. Т. 123. № 4. С. 339–343.
  3. Кашин С.Н., Коплак О.В., Валеев Р.А., Пискорский В.П., Бурканов М.В., Моргунов Р.Б. Влияние механической деформации на магнитные свойства и магнитокалорический эффект в пленках Gd // ФТТ. 2023. Т. 65. Вып. 5. С. 782–789.
  4. Соколовский В.В., Загребин М.А., Бучельников В.Д., Марченков В.В. Современные магнитокалорические материалы: существующие проблемы и перспективы исследований // ФММ. 2023. Т. 124. № 11. С. 1019–1024.
  5. Панкратов Н.Ю., Терешинa И.С., Никитин С.А. Магнитокалорический эффект в редкозем ельных магнетиках // ФММ. 2023. Т. 124. № 11. С. 1093–1101.
  6. Taskaev S., Skokov K., Khovaylo V., Ulyanov M., Bataev D., Karpenkov D., Radulov I., Dyakonov A., Gutfleisch O. Magnetocaloric effect in cold rolled foils of Gd100-xInx (x = 0, 1, 3) // J. Magn. Magn. Mater. 2018. V. 459. P. 46–48.
  7. Рогачев А.С. Структура, стабильность и свойства высокоэнтропийных сплавов // ФММ. 2020. Т. 121. № 8. С. 807–841.
  8. Yuan Y., Wu Y., Tong X., Zhang H., Wang H., Liu X.J., Ma L., Suo H.L., Lu Z.P. Rare-earth high-entropy alloys with giant magnetocaloric effect // Acta Mater. 2017. V. 125. P. 481–489.
  9. Андреенко А.С., Белов К.П., Никитин С.А., Тишин А.М. Магнитокалорические эффекты в редкоземельных магнетиках // УФН. 1989. Т. 158. Вып. 4. С. 553–579.
  10. Gimaev R.R., Zverev V.I., Mello V.D. Magnetic properties of single-crystalline terbium and holmium — Experiment and modeling // J. Magn. Magn. Mater. 2020. V. 505. P. 166781.
  11. Zverev V.I., Gimaev R.R., Komlev A.S., Kovalev B.B., Queiroz F.G., Mello V.D. Magnetic properties of dysprosium — Experiment and modeling // J. Magn. Magn. Mater. 2021. V. 524. P. 167593.
  12. Uporov S.A., Estemirova S.Kh., Sterkhov E.V., Balyakin I.A., Rempel A.A. Magnetocaloric effect in ScGdTbDyHo high-entropy alloy: Impact of synthesis route // Intermetallics. 2022. V. 151. P. 107678.
  13. Uporov S.A., Sterkhov E.V., Balyakin I.A., Bykov V.A., Sipatov I.S., Rempel A.A. Synthesis and magnetic properties of some monotectic composites containing ultra-dispersed particles of YGdTbDyHo high-entropy alloy // Intermetallics. 2024. V. 165. P. 108121.
  14. Wang L., Lu Z., Guo H., Wu Y., Zhang Y., Zhao R., Jiang S., Liu X., Wang H., Fu Z., Zhao J., Ma D., Lu Z. Multi-principal rare-earth Gd-Tb-Dy-Ho-Er alloys with high magnetocaloric performance near room temperature // J. Alloys Compd. 2023. V. 960. P. 170901.
  15. Kuz’min M.D. Factors limiting the operation frequency of magnetic refrigerators // Appl. Phys. Lett. 2007. V. 90. P. 251916.
  16. Taskaev S.V., Buchelnikov V.D., Pellenen A.P., Kuz’min M.D., Skokov K.P., Karpenkov D.Yu., Bataev D.S., Gutfleisch O. Influence of thermal treatment on magnetocaloric properties of Gd cold rolled ribbons // J. Appl. Phys. 2013. V. 113. P. 17A933.
  17. Kitanovski A. Energy applications of magnetocaloric materials // Adv. Energy Mater. 2020. V. 10. P. 1903741.
  18. Шишкин Д.А., Волегов А.С., Андреев С.В., Баранов Н.В. Магнитное состояние и магнитотепловые свойства быстрозакаленных сплавов Gd75M25 (M = Co, Ni) // ФММ. 2012. Т. 113. № 5. С. 485–491.
  19. Svalov A.V., Andreev S.V., Larrañaga A., Orue I., Kurlyandskaya G.V. Rapidly quenched non-strained nanocrystalline Gd ribbons: Structural features and magnetic properties // J. Magn. Magn. Mater. 2019. V. 490. P. 165529.
  20. Zvonov A.I., Pankratov N.Yu., Karpenkov D.Yu., Smarzhevskaya A.I., Karpenkov A.Yu., Nikitin S.A. The change of crystallite sizes and magnetocaloric effect in rapidly quenched dysprosium // Phys. Status Solidi C. 2014. V. 11. № 5–6. P. 1149–1154.
  21. Curzon A.E., Chlebek H.G. The observation of face centred cubic Gd, Tb, Dy, Ho, Er and Tm in the form of thin films and their oxidation // J. Phys. F: Metal Phys. 1973. V. 3. P. 1–5.
  22. Никитин С.А. Магнитные свойства редкоземельных металлов и их сплавов. М.: Изд-во МГУ, 1989. 247 с.
  23. Gimaev R.R., Komlev A.S., Davydov A.S., Kovalev B.B., Zverev V.I. Magnetic and electronic properties of heavy lanthanides (Gd, Tb, Dy, Er, Ho, Tm) // Crystals. 2021. V. 11. Р. 82.
  24. Zhu W.H., Ma L., He M.F., Lu S.F., Li Z.K., Rao G.H., Li L., Li X.M., Yin C.Q. Magnetic properties and magnetocaloric effect of GdTbHoEr-based high-entropy alloy ribbons // J. Mater. Sci: Mater. Electron. 2022. V. 33. P. 25930–25938.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Diffraction pattern of the GdTbDyHoEr alloy in the bulk (1) and rapidly quenched (2) states. The red squares indicate the most intense lines of the unidentified phase.

Download (17KB)
3. Fig. 2. Dependences of the magnetic moment on the temperature of the GdTbDyHoEr alloy in the bulk (1) and rapidly quenched (2) states, measured during sample cooling in a field of m0H = 0.01 T. The inset shows in more detail the M(T) dependences near the temperature of the “paramagnet–helical antiferromagnet” magnetic phase transition.

Download (20KB)
4. Fig. 3. Magnetization curves for the bulk GdTbDyHoEr alloy measured at different temperatures (a). The appearance of the same magnetization curves in the region of relatively small magnetic fields (b).

Download (38KB)
5. Fig. 4. Magnetization curves for the GdTbDyHoEr alloy in the rapidly quenched state, measured at different temperatures.

Download (21KB)
6. Fig. 5. Magnetization curves for the GdTbDyHoEr alloy in bulk and rapidly quenched states, measured at T = 150 K. The inset shows the method for determining Hcr.

Download (21KB)
7. Fig. 6. Temperature dependence of the change in the magnetic part of the entropy of the bulk alloy GdTbDyHoEr.

Download (25KB)
8. Fig. 7. Temperature dependence of the change in the magnetic part of the entropy of the GdTbDyHoEr alloy in the rapidly quenched state.

Download (26KB)
9. Fig. 8. Field dependences of the change in the magnetic part of the entropy and cooling capacity of the GdTbDyHoEr alloy in bulk and rapidly quenched states.

Download (18KB)