Distribution of magnetization in single-crystals of iron-silicon soft magnetic alloys before and after heat treatments
- Authors: Ershov N.V.1, Kleinerman N.M.1, Lukshina V.A.1, Timofeeva A.V.1
-
Affiliations:
- Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences
- Issue: Vol 125, No 12 (2024)
- Pages: 1577-1588
- Section: ЭЛЕКТРИЧЕСКИЕ И МАГНИТНЫЕ СВОЙСТВА
- URL: https://innoscience.ru/0015-3230/article/view/681053
- DOI: https://doi.org/10.31857/S0015323024120107
- EDN: https://elibrary.ru/IIOEFC
- ID: 681053
Cite item
Abstract
The distribution of magnetization in single-crystal samples of silicon iron made in the form of thin disks after heat treatments under the influence of a magnetic field or mechanical stress was determined by Mössbauer spectroscopy. At contents of 5 and 8 at% Si, the samples had a cubic ({100}), and at 6 at% Si, a Gossian ({011}) orientation of the crystallographic axes. Using the parameters obtained as a result of deconvolution of Mössbauer spectra, the relative fractions of the magnetic moments of iron atoms oriented along the easy magnetization axes are determined. It has been shown that annealing and cooling in a ferromagnetic state under an external influence of the field or stress applied along the plane of the sample redistributes the magnetic moments in favor of the easy magnetization axes lying in the sample plane. The greatest effect is achieved during annealing in a direct-current magnetic field. At the same time, there is a rather large fraction of magnetization oriented outside the plane of the sample, which may be explained by the action of a demagnetizing factor.
Full Text

About the authors
N. V. Ershov
Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences
Author for correspondence.
Email: nershov@imp.uran.ru
Russian Federation, Ekaterinburg
N. M. Kleinerman
Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences
Email: nershov@imp.uran.ru
Russian Federation, Ekaterinburg
V. A. Lukshina
Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences
Email: nershov@imp.uran.ru
Russian Federation, Ekaterinburg
A. V. Timofeeva
Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences
Email: nershov@imp.uran.ru
Russian Federation, Ekaterinburg
References
- Enz U. Magnetism and Magnetic Materials: Historical Developments and Present Role in Industry and Technology / Handbook of Magnetic Materials. V. 3. Ed. E.P Wohlfarth. North-Holland Publishing Company, 1982. P. 1‒36.
- Goss N.P. New Development in Electrical Strip Steels Characterized by Fine Grain Structure Approaching the Properties of a Single Crystal // Trans. American Soc. Metals. 1935. V. 23. P. 511‒531.
- Tebble R.S., Craik D.J. Magnetic Materials. London: John Wiley, 1969. 520 р.
- Taguchi S., Yamamoto Т., Sakakura A. New grain‒oriented silicon steel with high permeability "ORIENTCORE HI‒B" // IEEE Trans. Magn. 1974. V. 10. No. 2. P. 123‒127.
- Бозорт Р. Ферромагнетизм. М.: Иностранная литература, 1956. 784 с.
- Лесник А.Г. Наведенная магнитная анизотропия. Киев: Наукова думка, 1976. 163 с.
- Грехем Ч. Термомагнитная обработка / Магнитные свойства металлов и сплавов: семинар по магнитным свойствам металлов и сплавов, Кливленд, 25‒26 октября 1958 г. / ред. С. В. Вонсовский; пер. с англ. Л. А. Шубина. М.: Иностранная литература, 1961. 440 с.
- Губернаторов В.В., Сычева Т.С., Драгошанский Ю.Н. Формирование свойств ферромагнитных сплавов при термомагнитной и термомеханической обработках // Физика металлов и металловедение. 2004. Т. 98. № 1. С. 31‒37.
- Williams H.J. Magnetic Properties of Single Crystals of Silicon Iron // Phys. Rev. 1937. V. 52. No. 7. P. 747–750.
- Neél L. Anisotropie magnétique superficielle et surstructures d’orientation // J. de Phys. Radium. 1954. V. 15. No. 4. P. 225–239.
- Taniguchi S., Yamamoto M. A note on a theory of the uniaxial ferromagnetic anisotropy induced by cold work or by magnetic annealing in cubic solid solutions // Sci. Reports of the Research Institutes, Tohoku University. Ser. A, Physics, Chemistry and Metallurgy. 1954. V. 6. P. 330–332.
- Ершов Н.В., Клейнерман Н.М., Лукшина В.А., Тимофеева А.В. Распределение намагниченности в монокристаллах железокремнистых сплавов // ФММ. 2024. Т. 125. № 7.
- Ершов Н.В., Клейнерман Н.М., Лукшина В.А., Пилюгин В.П., Сериков В.В. Особенности локальной атомной структуры сплава Fe‒Si в α‒области фазовой диаграммы // Физика твердого тела. 2009. Т. 51. № 6. С. 1165–1171.
- Сериков В.В., Клейнерман Н.М., Лукшина В.А., Ершов Н.В. Ближний порядок в сплавах Fe1-xSix (x=0.05–0.08) с наведенной магнитной анизотропией // ФТТ. 2010. Т. 52. № 2. С. 316–322.
- Ершов Н.В., Лукшина В.А., Клейнерман Н.М., Сериков В.В. Магнитная доменная и локальная атомная структура сплава Fe0.94Si0.06 до и после термомагнитной обработки в переменном магнитном поле // ФТТ. 2012. Т. 54. № 3. С. 480–489.
- Русаков B.C. Мессбауэровская спектроскопия локально неоднородных систем. Алматы: ОПНИ ИЯФ НЯЦ РК, 2000. 438 с.
- Черненков Ю.П., Федоров В.И., Лукшина В.А., Соколов Б.К., Ершов Н.В. Ближний порядок в монокристаллах α-Fe–Si // ФММ. 2001. Т. 92. №. 2. С. 95–100.
- Chernenkov Yu.P., Fedorov V.I., Lukshina V.A., Sokolov B.K., Ershov N.V. Short-range order in α-Fe–Si single crystals // J. Magn. Magn. Mater. 2003. V. 254–255. P. 346–348.
- Chernenkov Yu.P., Ershov N.V., Lukshina V.A., Fedorov V.I., Sokolov B.K. An X-ray diffraction study of the short-range ordering in the soft-magnetic Fe–Si alloys with induced magnetic anisotropy // Physica B. 2007. V. 396. № 1–2. P. 220–230.
- Ершов Н.В., Черненков Ю.П., Лукшина В.А., Федоров В.И. Рентгенодифракционные исследования особенностей атомной структуры сплава Fe‒Si в α‒области фазовой диаграммы // ФТТ. 2009. Т. 51. № 3. С. 417– 422.
- Ершов Н.В., Черненков Ю.П., Лукшина В.А., Федоров В.И. Структура сплавов α‒FeSi с 8 и 10 ат.% кремния // ФТТ. 2012. Т. 54. № 9. С. 1813–1819.
- Старцева Е.В., Шулика В.В. Связь эффективности термомагнитной обработки и формы кривой температурной зависимости начальной проницаемости железокремнистых сплавов // ФММ. 1974. Т. 37. № 1. С. 98–106.
- Stearns M.B. Internal Magnetic Fields, Isomer Shifts, and Relative Abundances of the Various Fe Sites in FeSi Alloys // Phys. Rev. 1963. V. 129. No. 3. P. 1136–1144.
- Stearns M.B. Spin‒Density Oscillations in Ferromagnetic Alloys. I. "Localized" Solute Atoms: Al, Si, Mn, V, and Cr in Fe // Phys. Rev. 1966. V. 147. No. 2. P. 439–453.
- Arzhnikov A.K., Dobysheva L.V. Local magnetic moments and hyperfine magnetic fields in disordered metal-metalloid alloys // Phis. Rev. B. 2000. V. 62. No. 9. P. 5324–5326.
- Arzhnikov A.K., Dobysheva L.V. Formation of magnetic characteristics and hyperfine fields in metal–metalloid alloys // Comput. Mater. Sci. 2002. V. 24. No. 1–2. Р. 203–207.
- Ершов Н.В., Аржников А.К., Добышева Л.В., Черненков Ю.П., Федоров В.И., Лукшина В.А. Искажения кристаллической решетки вокруг примесных атомов в сплавах α‒Fe1−xSix // ФТТ. 2007. Т. 49. № 1. С. 64–71.
- Вертхейм Г. Эффект Мессбауэра. Принципы и применения. М.: Мир, 1966. 250 с.
- Горбатов О.И., Кузнецов А.Р., Горностырев Ю.Н., Рубан А.В., Ершов Н.В., Лукшина В.А., Черненков Ю.П., Федоров В.И. Роль магнетизма в формировании ближнего порядка в сплавах железо‒кремний // ЖЭТФ. 2011. Т. 139. № 5. С. 969–982.
- Osborn J.A. Demagnetizing factors of the general ellipsoid // Phys. Rev. 1945. V. 67. No. 11–12. P. 351–357.
- Chen D.-X., Pardo E., Sanchez A. Demagnetizing factors for rectangular prisms // IEEE Trans. Magn. 2005. V. 41. No. 6. P. 2077‒2088.
- Zverev V.I., Gimaev R.R., Tishin A.M., Mudryk Ya., Gschneidner Jr K.A., Pecharsky V.K. The role of demagnetization factor in determining the ‘true’ value of the Curie temperature // J. Magn. Magn. Mater. 2011. V. 323. P. 2453–2457.
Supplementary files
