Increasing the coercivity of (Nd, Pr)–(Fe, Co, Cu, Al, Ga)–b magnets without adding heavy rare earth elements

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The effect of various heat treatments on the magnetic properties and microstructure of magnets manufactured using low-oxygen technology from the alloy (Nd, Pr)31.9Febal.(Co, Cu, Al, Ga)1.7B0.8 (wt%) has been studied. It has been shown that two-stage heat treatment leads to a significant increase in the coercive force of the magnets compared to the single-stage one. The obtained magnets have the properties (Br = 13.2 kG, MH= 17.9 kOe, BHc = 12.5 kOe, (BH)max = 42.4 MGOe, α = –0.11 %/°С, β = –0.54 %/°С) corresponding to the properties of (Nd, Dy)–Fe–B magnets used to produce magnetic systems of wind turbines. The use of Pr and Ga makes it possible to reduce the cost of the initial alloy compared to alloys with Dy.

Негізгі сөздер

Толық мәтін

Рұқсат жабық

Авторлар туралы

D. Kolodkin

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: kolodkin@imp.uran.ru
Ресей, Ekaterinburg

A. Protasov

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Email: kolodkin@imp.uran.ru
Ресей, Ekaterinburg

O. Golovnya

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Email: kolodkin@imp.uran.ru
Ресей, Ekaterinburg

L. Stashkova

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Email: kolodkin@imp.uran.ru
Ресей, Ekaterinburg

V. Gaviko

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Email: kolodkin@imp.uran.ru
Ресей, Ekaterinburg

D. Vasilenko

Ural Electromechanical Plant (UEMP JSC)

Email: kolodkin@imp.uran.ru
Ресей, Ekaterinburg

D. Bratushev

Ural Electromechanical Plant (UEMP JSC)

Email: kolodkin@imp.uran.ru
Ресей, Ekaterinburg

A. Shitov

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences; Ural Electromechanical Plant (UEMP JSC)

Email: kolodkin@imp.uran.ru
Ресей, Ekaterinburg; Ekaterinburg

A. Popov

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Email: kolodkin@imp.uran.ru
Ресей, Ekaterinburg

Әдебиет тізімі

  1. Vasilenko D.Y., Shitov A.V., Bratushev D.Y., Podkorytov K.I., Popov A.G., Gaviko V.S., Golovnya O.A. Magnetic hysteresis properties and microstructure of high-coercivity (Nd,Dy)–Fe–B magnets with Dy less than 10 wt% and low oxygen // Phys. Met. Metal. 2022. V. 123. № 2. P. 145–154.
  2. Sasaki T.T., Ohkubo T., Takada Y., Sato T., Kato A., Kaneko Y., Hono K. Formation of non-ferromagnetic grain boundary phase in a Ga-doped Nd-rich Nd–Fe–B sintered magnet // Scripta Mater. 2016. V. 113. P. 218–221.
  3. Xu X.D., Sasaki T.T., Li J.N., Dong Z.J., Sepehri-Amin H., Kim T.H., Ohkubo T., Schrefl T., Hono K. Microstructure of a Dy-free Nd–Fe–B sintered magnet with 2 T coercivity // Acta Mater. 2018. V. 156. P. 146–157.
  4. Sasaki T.T., Takada Y., Okazaki H., Ohkubo T., Nakamura T., Sato T., Kato A., Kaneko Y., Hono K. Role of Ga on the high coercivity of Nd-rich Ga-doped Nd–Fe–B sintered magnet // J. Alloys Compd. 2019. V. 790. P. 750–759.
  5. Huang Q., Jiang Q., Shi Y., Rehman S. Ur, Wei X., Li Z., Shi D., Xu D., Zhong Z. Enormous improvement of the coercivity of Ga and Cu co-doping Nd-Fe-B sintered magnet by post-sinter annealing // J. Alloys Compd. 2022. V. 894. 162418.
  6. Huang Q., Jiang Q., Shi Y., Rehman S.Ur., Shi D., Fu G., Li Z., Xu D., Chen D., Zhong Z. The influence of Gallium doping on the magnetic performance and microstructure of Nd–Fe–B sintered magnets // JMMM. 2022. V. 552. 169242.
  7. Zhu J., Ding G., Jin L., Jin Z., Zheng B., Guo S., Chen R., Yan A. Effects of Nd–Ga intergranular addition on microstructure and magnetic properties of heavy-rare-earth-free Nd–Fe–B sintered Magnets // J. Rare Earths. 2022. V. 40. P. 924–929.
  8. Xu X.D., Dong Z.J., Sasaki T.T., Tang X., Sepehri-Amin H., Ohkubo T., Hono K. Influence of Ti addition on microstructure and magnetic properties of a heavy-rare-earth-free Nd-Fe-B sintered magnet // J. Alloys Compd. 2019. V. 806. P. 1267–1275.
  9. Enokido Y., Miwe M., Goto S., Fujikawa Y. Effects of grain boundary phase on coercivity of dysprosium-free rare earth magnet // Mater. Trans. 2016. V. 57. № 11. P. 1960–1965.
  10. Ding G., Guo S., Chen L., Di J., Song J., Chen R., Lee D., Yan A. Coercivity enhancement in Dy-free sintered Nd–Fe–B magnets by effective structure optimization of grain boundaries // J. Alloys Compd. 2018. V.735. P. 795–801.
  11. Billington D., Okazaki H., Toyoki K., Kotani Y., Takada Y., Sato T., Kaneko Y., Kato A., Sasaki T. T., Ohkubo T., Hono K., Nakamura T. Relationship between the microstructure, local magnetism and coercivity in Ga-containing Nd–Fe–B sintered magnets // Acta Mater. 2021. V. 205. 116517.
  12. Li J.Q., Zhang W.H., Yu Y.J., Liu F. S., Ao W. Q., Yan J.L. The isothermal section of the Nd–Fe–Ga ternary system at 773K // J. Alloys Compd. 2009. V. 487. P. 116–120.
  13. Gabay A., Zhang Y., Hadjipanayis G. Effect of very small additions on the coercivity of Dy-free Nd–Fe–(Co)–B magnets // JMMM. 2002. V. 238. P. 226–232.
  14. Bernardi J., Fidler J. Preparation and TEM-study of sintered Nd–Fe–B–Ga–Nb magnets // IEEE Trans. Magn. 1993. V. 29. P. 2773–2775.
  15. De Groot C.H., Buschow K. H. J., de Boer F. R., de Kort K. Two-powder Nd2Fe14B magnets with DyGa-addition // J. Appl. Phys. 1998. V. 83. P. 388–393.
  16. Fidler J., Groiss C., Tokunaga M. The influence of Ga-substitution on the coercivity of Nd-(Fe,Co)-B sintered permanent magnets // IEEE Trans. Magn. 1990. V. 26. P. 1948–1950.
  17. Vasilenko D.Y., Shitov A.V., Bratushev D.Y., Podkorytov K.I., Gaviko V.S., Golovnya O.A., Popov A.G. Magnetics hysteresis properties and microstructure of high-energy (Nd,Dy)–Fe–B magnets with low oxygen content // Phys. Met. Metal. 2021. V. 122. № 12. P. 1173–1182.
  18. Woodcock T.G., Bittner F., Mix T., Müller K.-H., Sawatzki S., Gutfleisch O. On the reversible and fully repeatable increase in coercive field of sintered Nd–Fe–B magnets following post sinter annealing // JMMM. 2014. V. 360. P. 157–164.
  19. Fu S., Liu X., Jin J., Zhang Z., Liu Y., Yan M. Magnetic properties evolution with grain boundary phase transformation and their growth in Nd–Fe–Cu–Ga–B sintered magnet during post-sinter annealing process // Intermetallics. 2021. V. 137. 107303.
  20. Okamoto S., Miyazawa K., Yomogita T., Kikuchi N., Kitakami O., Toyoki K., Billington D., Kotani Y., Nakamura T., Sasaki T.T., Ohkubo T., Hono K., Takada Y., Sato T., Kaneko Y., Kato A. Temperature dependent magnetization reversal process of a Ga-doped Nd–Fe–B sintered magnet based on first-order reversal curve analysis // Acta Mater. 2019. V. 178. P. 90–98.
  21. Branagan D.J., Kramer M.J, Tang Y.L., McCallum R.W. Maximizing loop squareness by minimizing gradients in the microstructure // J. Appl. Phys. 1999. V. 85. P. 5923–5925.
  22. Perigo E.A., Takiishi H., Motta C.C., Faria R.N. Microstructure and squareness factor: A quantative correlation in (Nd,Pr)FeB sintered magnets // J. Appl. Phys. 2007. V. 102. 113912.
  23. Haavisto M., Kankaanpää H., Santa-Nokki T., Tuominen S., Paju M. Effect of stabilization heat treatment of time-dependent polarization losses in sintered Nd–Fe–B permanent magnets // EPJ Web of Conf. 2013. V. 40. 06001.
  24. Popov A.G., Kolodkin D.A., Gaviko V.S., Vasilenko D.Yu., Shitov A.V. Structure and Properties of R-(Fe,Co)–B (R=Nd,Dy,Ho) permanent magnets with low temperature coefficient of induction // Met. Sci. Heat Treatment. 2018. V. 60. P. 528–533.
  25. Pandian S., Chandrasekaran V., Markandeyulu G., Iyer K.J.L., Rama Rao K.V.S. Effect of Al, Cu, Ga, and Nb additions on the magnetic properties and microstructural features of sintered NdFeB // J. Appl. Phys. 1991. V. 92. № 10. P. 6082–6086.
  26. Zhou Q., Li W., Hong Y., Zhao L., Zhong X., Yu H., Huang L., Liu Z. Microstructure improvement related coercivity enhancement for sintered NdFeB magnets after optimized additional heat treatment // J. Rare Earths. 2018. V. 36. P. 379–384.
  27. Li J., Tang X., Sepehri-Amin H., Sasaki T.T., Ohkubo T., Hono K. Angular dependence and thermal stability of coercivity of Nd-rich Ga doped Nd–Fe–B sintered magnet // Acta Mater. 2020. V. 187. P. 66–72.
  28. Schobinger-Papamantellos P., Buschow K.H.J., Ritter C. Magnetic ordering of the Nd6Fe13-xGa1+x (x=0,1) and Pr6Fe13-xGa1+x (x=0,1) compounds: a neutron diffraction study // J. Alloys Compd. 2003. V. 359. P. 10–21.
  29. Schobinger-Papamantellos P., Ritter C., Buschow K.H.J. On the magnetic ordering of Nd6Fe13-xAl1+x (x=1–3) and La6Fe11Al3 compounds // JMMM. 2003. V. 260. P. 156–172.
  30. Grieb B., Pithan C., Henig E.Th., Petzow G. Replacement of Nd by an intermetallic phase in the intergranular region of Fe–Nd–B sintered magnets // J. Appl. Phys. 1991. V. 70. № 10. P. 6354–6356.
  31. Popov A.G., Belozerov E.V., Pyzanova T.Z., Ermolenko A.S., Gaviko V.S., Lapina T.P., Shchukina L.V. Effect of boron concentration on the magnetic hysteresis properties and the structure of R–Fe–B–Cu (R=Pr,Nd) // Phys. Met. Metal. 1992. V. 74. № 5. P. 465–470.
  32. Matsuura Y., Hoshijima J., Ishii R. Relation between Nd2Fe14B grain alignment and coercive force decrease ratio in NdFeB sintered magnets // JMMM. 2013. V. 336. P. 88–92.
  33. Knoch K.G., Grieb B., Henig E.-Th., Kronmuller H., Petzow G. Upgraded Nd–Fe–B–AD (AD = Al, Ga) magnets: wettability and microstructure // IEEE Trans. on Magn. 1990. V. 26. № 5. P. 1951–1953.
  34. Soderznik M., Sepehri-Amin H., Sasaki T.T., Ohkubo T., Takada Y., Sato T., Kaneko Y., Kato A., Schrefl T., Hono K. Magnetization reversal of exchange-coupled and exchange-decoupled Nd–Fe–B magnets observed by magneto-optical Kerr effect microscopy // Acta Mater. 2017. V. 135. P. 68–76.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Demagnetization curves of magnets after primary maintenance, hardening from 1040°C (1) and subsequent maintenance: 2 — single-stage maintenance (TO2 at T2=480°C (1 h)); 3 — maintenance at T1=880°C (1 h); 4 — two-stage maintenance (TO1 at T1=880°C (1 h) + TO2 at T2=480°C (1 h)).

Жүктеу (18KB)
3. Fig. 2. Parameters of demagnetization curves of magnets after heat treatments: (a) after primary heat treatment: TO1 at T1 = 800–900°C → TO2 at T2 = 480°C; (b) after primary heat treatment and subsequent hardening from 1040°C: TO1 at T1 = 800–900°C → TO2 at T2 = 480°C. The square symbols indicate the magnetic parameters of the workpieces for subsequent heat treatments: after primary heat treatment (a) and after hardening from 1040°C (b).

Жүктеу (71KB)
4. Fig. 3. Temperature dependences of magnetic susceptibility χ┴(T) of magnets, measured across the texture direction, after quenching from 1040°C (a) and subsequent TO: (b) TO1 at T1=880°C; (c) two-stage TO (TO1 at T1=880°C and TO2 at T2=480°C); (d) two-stage TO + TO1 at T1=900°C.

Жүктеу (27KB)
5. Fig. 4. Diffraction pattern from the surface of a magnet section after primary heat treatment, including sintering at Ts = 1040 °C (1 h) and two-stage heat treatment (HT1 at T1 = 880 °C (1 h) and HT2 at T2 = 480 °C (2 h).

Жүктеу (18KB)
6. Fig. 5. Powder diffraction patterns of samples after quenching from Tcp (a) and subsequent HT: (b) HT1 at T1=880 °C; (c) two-stage HT (HT1 at T1=880 °C and HT2 at T2=480 °C). The black curve is the experiment, the blue curve is the calculation for the main phase Nd2Fe14B, the red curve is the calculation for the NdOx phase, the green curve is the calculation for the Nd2O3 phase.

Жүктеу (37KB)
7. Fig. 6. Microstructure of magnets after hardening from Tcp (a) and subsequent TO: (b) TO1 at T1 = 880 °C; (c) single-stage TO2 at T2 = 480 ºC; (d) two-stage TO (TO1 at T1 = 880 °C and TO2 at T2 = 480 °C).

Жүктеу (31KB)
8. Fig. 7. Diagrams of the values ​​of the average grain size (a) and the area of ​​grain boundary phases (b) of magnets during thermal treatment using single-stage and two-stage schemes.

Жүктеу (24KB)
9. Fig. 8. Demagnetization curves of a permanent magnet made of an alloy of the composition (Nd, Pr)31.9Feost.(Co, Cu, Al, Ga)1.7B0.8.

Жүктеу (12KB)