The structure of superconducting layers in wire composites with internal tin sources depending on the wire diameter

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The structure of superconducting layers in composites with internal tin sources and distributed Nb barrier has been studied using transmission and scanning electron microscopy. It has been shown that the outer diameter of the composite (1, 0.7 and 0.5 mm) affects the morphology, grain size and composition of the superconducting Nb3Sn phase layers formed upon reaction heat treatment in the regime 370°C for 100 h + 665°C for 40 h. A residual content of niobium has been identified in 10% of the subelements within the ∅1-mm sample, 4% within the ∅ 0.7-mm sample, and 0.8% within the ∅ 0.5-mm sample. The minimum average grain size of Nb3Sn grains is observed in the composite with a diameter of 0.7 mm.

Full Text

Restricted Access

About the authors

E. N. Popova

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Author for correspondence.
Email: popova@imp.uran.ru
Russian Federation, Ekaterinburg

I. L. Deryagina

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Email: popova@imp.uran.ru
Russian Federation, Ekaterinburg

E. I. Patrakov

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Email: popova@imp.uran.ru
Russian Federation, Ekaterinburg

A. S. Tsapleva

JSC “Academician A.A. Bochvar High-Tech Research Institute of Inorganic Materials”

Email: popova@imp.uran.ru
Russian Federation, Moscow

I. M. Abdyukhanov

JSC “Academician A.A. Bochvar High-Tech Research Institute of Inorganic Materials”

Email: popova@imp.uran.ru
Russian Federation, Moscow

N. V. Konovalova

JSC “Academician A.A. Bochvar High-Tech Research Institute of Inorganic Materials”

Email: popova@imp.uran.ru
Russian Federation, Moscow

M. V. Alekseev

JSC “Academician A.A. Bochvar High-Tech Research Institute of Inorganic Materials”

Email: popova@imp.uran.ru
Russian Federation, Moscow

References

  1. Ballarino A., Hopkins S.C., Bordini B., Richter D., Tommasini D., Bottura L., Benedikt M., Sugano M., Ogitsu T., Kawashima S., Saito K., Fukumoto Y., Sakamoto H., Shimizu H., Pantsyrny V., Abdyukhanov I., Shlyakov M., Zernov S., Buta F., Senatore C., Shin I., Kim J., Lachmann J., Leineweber A., Pfeiffer S., Baumgartner Th., Eisterer M., Bernardi J., Malagoli A., Braccini V., Vignolo M., CNR-SPIN, Putti M., Ferdeghini C., The CERN FCC Conductor Development Program: A Worldwide. Effort for the Future Generation of High-Field Magnets // IEEE Trans. Appl. Supercond. 2019. V. 29. No. 5. P. 1–9. Art no. 6001709.
  2. Ballarino A., Bottura L. Targets for R&D on Nb3Sn Conductor for High Energy Physics // IEEE Trans. Appl. Supercond. 2015. V. 25. No. 3. Art. Numb. 6000906.
  3. Попова Е.Н., Дерягина И.Л. Оптимизация микроструктуры слоев Nb3Sn в сверхпроводящих композитах // ФММ. 2018. Т. 119. № 12. С. 1290–1296.
  4. Larbalestier D.C. Micro- and macro-structural factors which may control the superconducting properties of Nb3Sn multifilamentary composite superconductors // Cryogenics. 1995. V. 35. VAMAS Suppl. P. S15S18.
  5. Godeke A. A review of the properties of Nb3Sn and their variation with A15 composition, morphology and strain state // Supercond. Sci. Technol. 2006. V. 19. P. R68–R80.
  6. Flükiger R., Uglietti D., Senatore C., Buta F. Microstructure, composition and critical current density of superconducting Nb3Sn wires. // Cryogenics. 2008. V. 48. Р. 293–307.
  7. Abächerli V., Uglietti D., Lezza P., Seeber B., Flükiger R., Cantoni M., Buffat P.-A. The influence of Ti doping methods on the high field performance of (Nb,Ta,Ti)3Sn multifilamentary wires using Osprey bronze // IEEE Trans. Appl. Supercond. 2005. V. 15. № 2. Р. 3482–3485.
  8. Xu X., Sumption M.D., Bhartiya S., Peng X., Collings E.W. Critical current densities and microstructures in rod-in-tube and tube type Nb3Sn strands — present status and prospects for improvement // Supercond. Sci. Technol. 2013. V. 26. Art. No. 075015.
  9. Zhang P.X., Feng Y., Liu X.H., Li C.G., Zhang K., Tang X.D., Wu Y. Microstructure and superconducting properties comparison of bronze and internal tin process Nb3Sn strands for ITER // Physica C. 2009. V. 469. P. 1536–1540.
  10. Deryagina I., Popova E., Patrakov E., Valova-Zaharevskaya E. Structure of superconducting layers in bronze-processed and internal-tin Nb3Sn-based wires of various designs // J. Appl. Phys. 2017. V. 121. Р. 233901.
  11. Cheggour N., Lee P.J., Goodrich L.F., Sung Z.-H., Stauffer T.C., Splett J.D., Jewell M.C. Influence of the heat-treatment conditions, microchemistry, and microstructure on the irreversible strain limit of a selection of Ti doped internal-tin Nb3Sn ITER wires // Supercond. Sci. Technol. 2014. V. 27. Art. No. 105004.
  12. Tarantini C., Sung Z.-H., Lee P.J., Ghosh A.K., Larbalestier D.C. Significant enhancement of compositional and superconducting homogeneity in Ti rather than Ta-doped Nb3Sn // Appl. Phys. Lett. 2016. V. 108. Art. No. 042603.
  13. Попова Е.Н., Дерягина И.Л., Валова-Захаревская Е.Г., Патраков Е.И. Влияние режимов отжига на структуру сверхпроводящих слоев Nb3Sn в композитах с внутренними источниками олова // ФММ. 2016. Т. 117. № 10. С. 1063–1072.
  14. Xu X. A review and prospects for Nb3Sn superconductor development // Supercond. Sci. Technol. 2017. V. 30. Art. No. 093001.
  15. Deryagina I., Popova E., Patrakov E., Valova-Zaharevskaya E. Effect of diffusion annealing and design of internal-tin wires on the structure and morphology of superconducting Nb3Sn layers // IEEE Trans. Appl. Supercond. 2016. V. 26. № 2. Art. Numb. 6000706 (6 pp.)
  16. Lukyanov P., Pantsyrny V., Polikarpova M., Guryev V., Novosilova D., Bazaleeva K., Tsapleva A., Alekseev M., Silaev A., Abdyukhanov I., and Sergeev V. The comparative study of the Internal Tin Nb3Sn wires with different layouts // J. Phys.: Conf. Ser. 2020. V. 1559. Art. Numb. 012061.
  17. Abdyukhanov I., Pantsyrny V., Tsapleva A., Lukyanov P., Konovalova N., Mareev K., Novosilova D., Drobyshev V., Kravtsova M., Krylova M., Savel’ev I., Potapenko M., Alekseev M., Silaev A., Zernov S.M., Shlyahov M.J., Eseneev A.V., Kropachev A.S. Superconducting properties of Nb3Sn superconductors doped with Ti, Zr and Ti, Ti and Ta // IEEE Trans. Appl. Supercond. 2020. V. 30. No. 4. Art. No. 19621359.
  18. Vostner A., Salpietro E. Enhanced critical current densities in Nb3Sn superconductors for large magnets // Supercond. Sci. Technol. 2006. V. 19. P. S90–S95.
  19. Новосилова Д.С., Поликарпова М.В., Абдюханов И.М., Дерягина И.Л., Попова Е.Н., Патраков Е.И., Цаплева А.С., Алексеев М.В. Влияние диффузионного отжига сверхпроводников на основе Nb3Sn с внутренним источником олова на электропроводность стабилизирующей меди // ФММ. 2021. Т. 122. № 1. С. 38–44.
  20. Новосилова Д.С., Абдюханов И.М., Воробьева А.Е., Дергунова Е.А., Поликарпова М.В., Мареев К.А., Трактирникова Н.В., Попова Е.Н., Дерягина И.Л., Сударева С.В. Влияние диффузионного отжига на остаточное электросопротивление хромированных стрендов на основе Nb3Sn, полученных по бронзовой технологии // ФММ. 2012. Т. 113. № 10. С. 1008–1013.
  21. Alknes P., Bordini B., Bartova B., Izquierdo G.A., Cantoni M., Devred A., Vostner A., Ballarino A., Bottura L. Degradation of the Cu Residual Resistivity Ratio in Cr-Plated Composite Nb3Sn Wires // IEEE Trans. Appl. Supercond. 2015. V. 25. Art. Numb. 7038153.
  22. Popova E.N., Popov V.V., Romanov E.P., Sudareva S.V., Elohina L.V., Vorobyova A.E., Shikov A.K., Pantsyrny V.I., Sudiev S.V. Effect of annealing on nanocrystalline structure of Nb3Sn diffusion layers in composites with internal tin sources // Def. Diffus. Forum. 2010. V. 297–301. P. 126–131.
  23. Popova E.N., Romanov E.P., Deryagina I.L., Sudareva S.V., Dergunova E.A., Vorobyova A.E., Balaev S.M. Effect of multifilamentary Nb/Cu-Sn wire diameter on the Nb3Sn diffusion layers structure // Def. Diffus. Forum. 2011. V. 312–315. P. 289–294.
  24. Дерягина И.Л., Попова Е.Н., Захаревская Е.Г., Романов Е.П., Воробьева А.Е., Дергунова Е.А., Балаев С.М. Влияние способа легирования и геометрии композита на структуру нанокристаллических слоев Nb3Sn в сверхпроводящих композитах Nb/Cu–Sn // Журнал Сибирского федерального университета. Серия: математика и физика. 2011. Т. 4. № 2. С. 149–161.
  25. Popova E.N., Deryagina I.L., Romanov E.P., Dergunova E.A., Vorobyova A.E., Balaev S.M. Solid-state diffusion formation of nanocrystalline Nb3Sn layers at two-staged annealing of multifilamentary Nb/Cu-Sn wires // J. Nano Research 2011. V. 16. P. 69–75.
  26. Popova E.N., Deryagina I.L., Valova-Zaharevskaya E.G. The Nb3Sn layers formation at diffusion annealing of Ti-doped multifilamentary Nb/Cu-Sn composites // Cryogenics. 2014. V. 63. P. 63–68.
  27. Barzi E., Gregory E., Pyon T. Heat treatment optimization of Internal Tin Nb3Sn strands // IEEE Trans. Appl. Supercond. 2001. V. 11. № 1. P. 3573–3576.
  28. Sudyev S.V., Pantsyrny V.I., Vorobyeva A.E., Beliakov N.A., Sergeev V.V. Development of Nb3Sn Internal Tin strands with enhanced current capacity and improved mechanical properties // IEEE Trans. Appl. Supercond. 2011. V. 21. P. 2575–2578.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. SEM images (in Z-contrast mode) of fragments of cross-sectional sections of samples 1 (∅ 1.0 mm) (a), 2 (∅ 0.7 mm) (b) and 3 (∅ 0.5 mm) (c) after RTO 370°C, 100 h + 665°C, 40 h. In Fig. 1a, the arrows indicate: 1 — stabilizing copper; 2 — subelement; 3 — tin source.

Download (46KB)
3. Fig. 2. Fragments of fractures of samples 1 — ∅ 1.0 mm (a), 2 — ∅ 0.7 mm (b) and 3 — ∅ 0.5 mm (c, d) after RTO 370°C, 100 h + 665°C, 40 h. Fig. 2d — the structure of the Nb3Sn layer, highlighted by the frame in Fig. 2c.

Download (46KB)
4. Fig. 3. Critical temperature (Tc0.1, Tc0.5 and Tc0.9) of sample 1 (Ø 1.0 mm) depending on the temperature (a) and duration (b) of the second stage of heat treatment.

Download (33KB)
5. Fig. 4. Structure of sample 1 (∅ 1.0 mm): a–c — residual niobium — bright field (a), dark field (b) in the reflection (110)Nb, highlighted by the aperture in the electron diffraction pattern (c), zone axis [001]Nb; g–e — superconducting layer — bright fields (g, d), dark field (e) in the reflection (200)Nb3Sn (indicated by the arrow in the electron diffraction pattern).

Download (49KB)
6. Fig. 5. Structure of sample 2 (∅ 0.7 mm): a–c — residual niobium — bright field (a), dark fields in reflections (͞1͞10)Nb, (210) Nb3Sn and (200) Nb3Sn, indicated by an arrow in the electron diffraction pattern (b, c), zone axis [001]Nb; g–e — superconducting layer — bright fields (g, d), dark field (e) in reflection (200)Nb3Sn (indicated by an arrow in the electron diffraction pattern).

Download (54KB)
7. Fig. 6. Structure of the superconducting layer of sample 3 (∅ 0.5 mm): a, b — bright fields; c — dark field in reflections (211)Nb3Sn and (210)Nb3Sn and electron diffraction pattern.

Download (23KB)
8. Fig. 7. Histograms of Nb3Sn grain size distribution in samples of different diameters: a — sample 1 (∅ 1.0 mm); b — sample 2 (∅ 0.7 mm); c — sample 3 (∅ 0.5 mm). TEM.

Download (41KB)