Structure and mechanical properties of Al–1.8Mn–1.6Cu alloy subjected to severe plastic deformation
- Autores: Petrova A.N.1, Astafiev V.V.1, Kuryshev A.O.1
-
Afiliações:
- Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences
- Edição: Volume 125, Nº 12 (2024)
- Páginas: 1636-1642
- Seção: СТРУКТУРА, ФАЗОВЫЕ ПРЕВРАЩЕНИЯ И ДИФФУЗИЯ
- URL: https://innoscience.ru/0015-3230/article/view/681059
- DOI: https://doi.org/10.31857/S0015323024120165
- EDN: https://elibrary.ru/IHVBXH
- ID: 681059
Citar
Resumo
The evolution of the structure and properties of an Al–1.8% Mn–1.6Cu alloy under deformation via high pressure torsion at room and elevated temperatures has been studied. The sequence of mechanisms of the formation of an ultrafine-grained structure has been established, and the cycling of the phase transformations, namely, the partial dissolution and precipitation of nanosized particles, has been observed. It has been found that aging, which occurs at the accumulated strain e = 6.9, suppresses the process of the grain growth under deformation at an elevated temperature. The effect of the structural-phase transformations on the strength and ductility of the alloy has been determined. As a result of deformation, the ultimate tensile strength increases by 3 times, and the yield strength increases by 7 times. Dynamic recrystallization results in a decrease in strength and in a considerable increase in the ductility of an alloy.
Palavras-chave
Texto integral

Sobre autores
A. Petrova
Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences
Autor responsável pela correspondência
Email: petrova@imp.uran.ru
Rússia, Ekaterinburg
V. Astafiev
Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences
Email: petrova@imp.uran.ru
Rússia, Ekaterinburg
A. Kuryshev
Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences
Email: petrova@imp.uran.ru
Rússia, Ekaterinburg
Bibliografia
- Mondolfo L.F. Aluminum Alloys: Structure and Properties. London: Butterworths, 1976. 806 p.
- Polmear I.J. Light Metals: From Traditional Alloys to Nanocrystals, fourth ed. Oxford: Elsevier, 2006. 421 p.
- Lamb J., Rouxel B., Langan T., Dorin T. Novel Al–Cu–Mn–Zr–Sc compositions exhibiting increased mechanical performance after a high-temperature thermal exposure // J. Mater. Eng. Perform. 2020. V. 29. P. 5672–5684. https://doi.org/10.1007/s11665-020-05040-0
- Chen Zh., Pei Ch., Ma C. Microstructures and mechanical properties of Al–Cu–Mn alloy with La and Sm addition // Rare Metal. 2012. V. 31. P. 332–335. https://doi.org/10.1007/s12598-012-0515-6
- Tiryakioglu M., Shuey R.T. Quench sensitivity of 2219-T87 aluminum alloy plate // Mater. Sci. Eng. A. 2010. V. 527. P. 5033–5037. https://doi.org/10.1016/j.msea.2010.04.060
- Белов Н.А. Фазовый состав промышленных и перспективных алюминиевых сплавов. Москва: Издательский Дом МИСиС, 2010. 511 с.
- Белов Н.А. Обоснование состава и структуры деформируемых сплавов на базе системы Al–Cu–Mn (Zr), не требующих гомогенизации и закалки // Сборник трудов Международной научно-технической конференции “МАШТЕХ 2022. Инновационные технологии, оборудование и материальные заготовки в машиностроении. Москва. 2022. С. 10–13.
- Belov N.A., Akopyan T.K., Shurkin P.K., Korotkova N.O. Comparative Analysis of Structure Evolution and Thermal Stability of Experimental AA2219 and Model Al–2wt.%Mn-2wt.%Cu Cold Rolled Alloys // JALCOM. 2021. V. 864. P. 158823. https://doi.org/10.1016/j.jallcom.2021.1588238
- Belov N.A., Alabin A.N. Energy efficient technology for Al–Cu–Mn–Zr sheet alloys // Mater. Sci. Forum. 2013. V. 765. P. 13–17. https://doi.org/10.4028/www.scientific.net/MSF.765.13
- Belov N.A., Alabin A.N., Matveeva I.A. Optimization of phase composition of Al–Cu–Mn–Zr–Sc alloys for rolled products without requirement for solution treatment and quenching // J. Alloys Compd. 2014. V. 583. P. 206–213. https://doi.org/10.1016/j.jallcom.2013.08.202
- Белов Н.А., Шуркин П.К., Короткова Н.О., Черкасов С.О. Влияние термообработки на структуру и термостойкость холоднокатаных листов сплавов системы Al–Cu–Mn с разным соотношением меди и марганца // Цветные металлы. 2021. № 9. C. 80–86. https://doi.org/10.17580/tsm.2021.09.09
- Estrin Y., Vinogradov A. Extreme grain refinement by severe plastic deformation: A wealth of challenging science // Acta Mater. 2013. V. 61. P. 782–817. https://doi.org/10.1016/j.actamat.2012.10.038
- Рогачев С.О., Наумова Е.А., Табачкова Н.Ю., Тен Д.В., Сундеев Р.В., Задорожный М.Ю. Влияние кручения под высоким давлением на структуру и механические свойства сплава Al–Ca–Cu // ФММ. 2023. Т. 124. № 6. С. 550–556. https://doi.org/10.31857/S0015323023600314
- Страумал Б.Б., Заворотнев Ю.Д., Метлов Л.С., Страумал П.Б., Петренко А.Г., Томашевская Е.Ю. Фазовые превращения, вызванные кручением под высоким давлением // ФММ. 2022. Т. 123. № 12. С. 1283–1288.
- Okeke U., Yilmazer H., Sato Sh., Boehlert C.J. Strength enhancement of an aluminum alloy through high pressure torsion // Mater. Sci. Eng. A. 2019. V. 760. P. 195–205. https://doi.org/10.1016/j.msea.2019.05.102
- Садыков Д.И., Мурашкин М.Ю., Кириленко А.А., Левин А.А., Лихачев А.И., Орлова Т.С. Аномальное изменение механических свойств ультрамелкозернистых сплавов Al–Mg–Zr при низких температурах // ФТТ. 2024. Т. 66. № 6. С. 933–945. https://doi.org/10.61011/FTT.2024.06.58250.119
- Chen Yu., Liu M., Ding L., Jia Zh., Jia Sh., Wang J., Murashkin M., Valiev R.Z., Roven H.J. Atomic-scale inhomogeneous solute distribution in an ultrahigh strength nanocrystalline Al–8Mg aluminum alloy // Mater. Characterization. 2023. V. 198. P. 112706.
- Lomakin I.V., Arutyunyan A.R., Valiev R.R., Gadzhiev F.A., Murashkin M.Yu. Design and Evaluation of an Experimental Technique for Mechanical and Fatigue Testing of Sub Sized Samples // Exper. Techn. 2018. V. 42. № 3. P. 261–270. https://doi.org/10.1007/s40799-017-0229-7
- Petrova A.N., Rasposienko D.Y., Astafyev V.V., Yakovleva A.O. Structure and strength of Al–Mn–Cu–Zr–Cr–Fe ALTEC alloy after radial-shear rolling // Letters on Mater. 2023. P. 177–182. https://doi.org/10.22226/2410-3535-2023-2-177-182
- Belov N.A., Korotkova N.O., Akopyan T.K., Pesin A.M. Phase composition and mechanical properties of Al–1.5%Cu–1.5%Mn–0.35%Zr(Fe,Si) wire alloy // J. Alloys Comp. 2019. V. 782. P. 735–746.
Arquivos suplementares
