Effect of mechanical alloying modes on the microstructure, phase composition and mechanical properties of powder high-entropy Co–Cr–Fe–Ni–Ti alloys

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The influence of the duration of mechanical alloying (15, 30, 45, and 60 min), the Ti content (4, 8, and 12 at %), and the method of its adding (in the form of Ti metal powder or TiH2 powder) on the microstructure, phase composition, and mechanical properties of Co–Cr–Fe–Ni–Ti high-entropy alloys (HEAs) manufactured by powder technology has been studied. It has been established that the structure of powder mixtures attains a high degree of homogeneity within 30 min of mechanical alloying and contains 43 and 57% of BCC and FCC phases, respectively. In the process of subsequent hot pressing, the structure is further homogenized, and the FCC phase content increases, reaching 99% in the alloys manufactured with TiH2. The optimal combination of mechanical properties is attained in the CoCrFeNiTi : the hardness is 74 HRA, and the ultimate tensile and bending strength are 690 and 1255 MPa, respectively. In the group of alloys made with Ti metal powder, the strength, hardness, density, and wear resistance grow, and brittleness decreases. To further improve the mechanical properties of Co–Cr–Fe–Ni–Ti HEAs manufactured using powder technology, it is necessary to optimize the σ-phase content and decrease the oxynitride phase content, which can be achieved both by adjusting the composition and by improving the modes of mechanical alloying.

Full Text

Restricted Access

About the authors

М. А. Berezin

National Research Technological University MISiS

Author for correspondence.
Email: berezinmaximus@gmail.com
Russian Federation, Moscow

А. А. Zaitsev

National Research Technological University MISiS

Email: berezinmaximus@gmail.com
Russian Federation, Moscow

B. Yu. Romanenko

National Research Technological University MISiS

Email: berezinmaximus@gmail.com
Russian Federation, Moscow

Р. А. Loginov

National Research Technological University MISiS

Email: berezinmaximus@gmail.com
Russian Federation, Moscow

References

  1. George E.P., Raabe D., Ritchie R.O. High-entropy alloys // Nat. Rev. Mater. 2019. V. 4. P. 515–534. https://doi.org/10.1038/s41578-019-0121-4
  2. Yeh J.-W., Chen S.-K., Lin S.-J., Gan J.-Y., Chin T.-S., Shun T.-T., Tsau C.-H., Chang S.-Y. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes // Adv. Eng. Mater. 2004. V. 6. № 5. P. 299–303. https://doi.org/10.1002/adem.200300567
  3. Cantor B., Chang I.T.H., Knight P., Vincent A.J.B. Microstructural development in equiatomic multicomponent alloys // Mater. Sci. Eng. A. 2004. V. 375–377. P. 213–218. https://doi.org/10.1016/j.msea.2003.10.257
  4. Otto F., Dlouhý A., Somsen Ch., Bei H., Eggeler G., George E.P. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy // Acta Mater. 2013. V. 61. № 15. P. 5743–5755. https://doi.org/10.1016/j.actamat.2013.06.018
  5. Otto F., Yang Y., Bei H., George E.P. Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys // Acta Mater. 2013. V. 61. № 7. P. 2628–2638. https://doi.org/10.1016/j.actamat.2013.01.042
  6. Ma D., Yao M., Pradeep K.G., Tasan C.C., Springer H., Raabe D. Phase stability of non-equiatomic CoCrFeMnNi high entropy alloys // Acta Mater. 2015. V. 98. P. 288–296. https://doi.org/10.1016/j.actamat.2015.07.030
  7. Gludovatz B., Hohenwarter A., Catoor D., Chang E.H., George E.P., Ritchie R.O. A fracture-resistant high-entropy alloy for cryogenic applications // Science. 2014. V. 345. № 6201. P. 1153-8. https://doi.org/10.1126/science.1254581
  8. Wu Z., Bei H., Pharr G.M., George E.P. Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures // Acta Mater. 2014. V. 81. P. 428–441. https://doi.org/10.1016/j.actamat.2014.08.026
  9. Laurent-Brocq M., Akhatova A., Perrière L., Chebini S., Sauvage X., Leroy E., Champion Y. Insights into the phase diagram of the CrMnFeCoNi high entropy alloy // Acta Mater. 2015. V. 88. P. 355–365. https://doi.org/10.1016/j.actamat.2015.01.068
  10. Haas S., Mosbacher M., Senkov O.N., Feuerbacher M., Freudenberger J., Gezgin S., Völkl R., Glatzel U. Entropy determination of single-phase high entropy alloys with different crystal structures over a wide temperature range // Entropy (Basel). 2018. V. 20. № 9. P. 654. https://doi.org/10.3390/e20090654
  11. Senkov O.N., Wilks G.B., Miracle D.B., Chuang C.P., Liaw P.K. Refractory high-entropy alloys //Intermetallics. 2010. V. 18. № 9. P. 1758–1765. https://doi.org/10.1016/j.intermet.2010.05.014
  12. Senkov O.N., Semiatin S.L. Microstructure and properties of a refractory high-entropy alloy after cold working // J. Alloys Compd. 2015. V. 649. P. 1110–1123. https://doi.org/10.1016/j.jallcom.2015.07.209
  13. Sheikh S., Shafeie S., Hu Q., Ahlström J., Persson C., Veselý J., Zýka J., Klement U., Guo S. Alloy design for intrinsically ductile refractory high-entropy alloys // J. Appl. Phys. 2016. V. 120. P. 164902. https://doi.org/10.1063/1.4966659
  14. Feuerbacher M., Heidelmann M., Thomas C. Hexagonal high-entropy alloys // Mater. Res. Lett. 2014. V. 3. № 1. P. 1–6. https://doi.org/10.1080/21663831.2014.951493
  15. Takeuchi A., Amiya K., Wada T., Yubuta K., Zhang W. High-entropy alloys with a hexagonal close-packed structure designed by equi-atomic alloy strategy and binary phase diagrams // JOM. 2014. V. 66. P. 1984–1992. https://doi.org/10.1007/s11837-014-1085-x
  16. Zhao Y.J., Qiao J.W., Ma S.G., Gao M.C., Yang H.J., Chen M.W., Zhang Y. A hexagonal close-packed highentropy alloy: the effect of entropy // Mater. Des. 2016. V. 96. P. 10–15. https://doi.org/10.1016/j.matdes.2016.01.149
  17. Qiao J.W., Bao M.L., Zhao Y.J., Yang H.J., Wu Y.C., Zhang Y., Hawk J.A., Gao M.C. Rare-earth high entropy alloys with hexagonal close-packed structure // J. Appl. Phys. 2018. V. 124. P. 195101. https://doi.org/10.1063/1.5051514
  18. Lilensten L., Couzinié J.P., Perrière L., Bourgon J., Emery N., Guillot I. New structure in refractory highentropy alloys // Mater. Lett. 2014. V. 132. P. 123–125. https://doi.org/10.1016/j.matlet.2014.06.064
  19. Yeh J.W., Chen Y.L., Lin S.J., Chen S.K. High-entropy alloys — a new era of exploitation // MSF. 2007. V. 560. P. 1–9. https://doi.org/10.4028/www.scientific.net/MSF.560.1
  20. Ma D., Grabowski B., Körmann F., Neugebauer J., Raabe D. Ab initio thermodynamics of the CoCrFeMnNi high entropy alloy: Importance of entropy contributions beyond the configurational one // Acta Mater. 2015. V. 100. P. 90–97. https://doi.org/10.1016/j.actamat.2015.08.050
  21. Poletti M.G., Battezzati L. Electronic and thermodynamic criteria for the occurrence of high entropy alloys in metallic systems // Acta Mater. 2014. V. 75. P. 297–306. https://doi.org/10.1016/j.actamat.2014.04.033
  22. Li Z., Raabe D. Strong and ductile non-equiatomic high-entropy alloys: design, processing, microstructure, and mechanical properties // JOM. 2017. V. 69. P. 2099–2106. https://doi: 10.1007/s11837-017-2540-2
  23. Joseph J., Stanford N., Hodgson P., Fabijanic D.M. Understanding the mechanical behaviour and the large strength/ductility differences between FCC and BCC AlxCoCrFeNi high entropy alloys // J. Alloys Compd. 2017. V. 726. P. 885–895. https://doi.org/10.1016/j.jallcom.2017.08.067
  24. Wang X.F., Zhang Y., Qiao Y., Chen G.L. Novel microstructure and properties of multicomponent CoCrCuFeNiTix alloys // Intermetallics. 2007. V. 15. № 3. P. 357–362. https://doi.org/10.1016/j.intermet.2006.08.005
  25. He J.Y., Liu W.H., Wang H., Wu Y., Liu X.J., Nieh T.G., Lu Z.P. Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system // Acta Mater. 2014. V. 62. P. 105–113. https://doi.org/10.1016/j.actamat.2013.09.037
  26. Zhou Y.J., Zhang Y., Wang Y.L., Chen G.L. Solid solution alloys of AlCoCrFeNiTix with excellent room-temperature mechanical properties // Appl. Phys. Lett. 2007. V. 90. P. 181904. https://doi.org/10.1063/1.2734517
  27. Li B.S., Wang Y.P., Ren M.X., Yang C., Fu H.Z. Effects of Mn, Ti and V on the microstructure and properties of AlCrFeCoNiCu high entropy alloy // Mater. Sci. Eng. A. 2008. V. 498. № 1–2. P. 482–486. https://doi.org/10.1016/j.msea.2008.08.025
  28. Stepanov N.D., Shaysultanov D.G., Salishchev G.A., Tikhonovsky M.A., Oleynik E. E., Tortika A.S., Senkov O.N. Effect of V content on microstructure and mechanical properties of the CoCrFeMnNiVx high entropy alloys // J. Alloys Compd. 2015. V. 628. P. 170–185. https://doi.org/10.1016/j.jallcom.2014.12.157
  29. Рогачев А.С. Структура, стабильность и свойства высокоэнтропийных сплавов // ФММ. 2020. Т. 121. № 8. С. 807−841. https://doi.org/10.31857/S0015323020080094
  30. Qi Y., Cao T., Zong H., Wu Y., He L., Ding X., Jiang F., Jin S., Sha G., Sun J. Enhancement of strength-ductility balance of heavy Ti and Al alloyed FeCoNiCr high-entropy alloys via boron doping // J. Mater. Sci. Technol. 2021. V. 75. P. 154–163. https://doi.org/10.1016/j.jmst.2020.10.023
  31. Tong Y., Chen D., Han B., Wang J., Feng R., Yang T., Zhao C., Zhao Y.L., Guo W., Shimizu Y., Liu C.T., Liaw P.K., Inoue K., Nagai Y., Hu A., Kai J.J. Outstanding tensile properties of a precipitation-strengthened FeCoNiCrTi0.2 high-entropy alloy at room and cryogenic temperatures // Acta Mater. 2019. V. 165. P. 228–240. https://doi.org/10.1016/j.actamat.2018.11.049
  32. Shun T.-T., Chang L.-Y, Shiu M.-H. Microstructures and mechanical properties of multiprincipal component CoCrFeNiTix alloys // Mater. Sci. Eng. A. 2012. V. 556. P. 170−174. https://doi.org/10.1016/j.msea.2012.06.075
  33. Chand S., Rana N.K., Rakha K., Reza S., Batra U. Synthesis and characterization of CoCrFeNi1.75-xTi0.25+x high entropy alloy // Mater. Today Proc. 2022. V. 62. № 14. P. 7540–7546. https://doi.org/10.1016/j.matpr.2022.04.344
  34. Li X., Li Z., Wu Z., Zhao S., Zhang W., Bei H., Gao Y. Strengthening in Al-, Mo- or Ti-doped CoCrFeNi high entropy alloys: A parallel comparison // J. Mater. Sci. Technol. 2021. V. 94. P. 264−274. https://doi.org/10.1016/j.jmst.2021.02.060
  35. Hedya S., Mohamed L., Gaber G., Elkady O., Megahed H., Abolkassem S. Effect of Si/Ti additions on physico-mechanical and chemical properties of FeNiCrCo high entropy alloys manufactured by powder metallurgy technique // Trans. Nonferrous Met. Soc. China. 2022. V. 32. № 8. P. 2648−2664. https://doi.org/10.1016/S1003-6326(22)65973-9
  36. Ивасишин О.М., Саввакин Д.Г., Бондарева К.А., Моксон В.С., Дузь В.А. Производство титановых сплавов и деталей экономичным методом порошковой металлургии для широкомасштабного промышленного применения // Наука и инновации. 2005. Т. 1. № 2. С. 44−57.
  37. Ma Q. Cold compaction and sintering of titanium and its alloys for near-net-shape or preform fabrication // Int. J. Powder Metall. 2010. V. 46. № 5. P. 29−43. https://doi.org/ 10.18307/2010.0104
  38. Ивасишин О.М., Бондарчук О.Б., Гуменяк М.М., Саввакин Д.Г. Поверхностные явления при нагревании порошка гидрида титана // Физика и химия твердого тела. 2011. Т. 12. № 4. С. 900−907.
  39. Collins T.J. ImageJ for microscopy // BioTechniques. 2007. V. 43. 1 Suppl. P. 25−30. https://doi.org/10.2144/000112517
  40. Bendo Demetrio K. Cryomilling and spark plasma sintering of 2024 aluminium alloy. 2011. PhD thesis, University of Trento.
  41. Cao M.Z., Zuo Y., He B.B., Liang Z.Y. Suppressing σ phase formation by rapid solidification to prevent embrittlement in a low-cost aged medium-entropy alloy // J. Mater. Res. Technol. 2023. V. 27. P. 5669−5680. https://doi.org/10.1016/j.jmrt.2023.11.055
  42. Lee J., Kim I., Kimura A. Application of small punch test to evaluate sigma-phase embrittlement of pressure vessel cladding material // J. Nucl. Sci. Technol. 2003. V. 40. № 9. P. 664−671. https://doi.org/10.1080/18811248.2003.9715404
  43. Hsu C.-Y., Juan C.-C., Chen S.-T., Sheu T.-S., Yeh J.-W., Chen S.-K. Phase diagrams of high-entropy alloy system Al-Co-Cr-Fe-Mo-Ni // JOM. 2013. V. 65. № 12. P. 1829−1839. htpps://doi.org/10.1007/s11837-013-0773-2
  44. Chuang M.-H., Tsai M.-H., Tsai C.-W., Yang N.-H., Chang S.-Y., Yeh J.-W., Chen S.-K., Lin S.-J. Intrinsic surface hardening and precipitation kinetics of Al0.3CrFe1.5MnNi0.5 multi-component alloy // J. Alloys Compd. 2013. V. 551. P. 12−18. https://doi.org/10.1016/j.jallcom.2012.09.133

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. SEM images of the microstructure of CoCrFeNiTi4, CoCrFeNiTi8 and CoCrFeNiTi12 powders after 15, 30, 45, 60 min ML. Cracks in the particles are outlined with a red dashed line.

Download (131KB)
3. Fig. 2. Distribution of elements in CoCrFeNiTi4, CoCrFeNiTi8 and CoCrFeNiTi12 powders after 15 min ML.

Download (79KB)
4. Fig. 3. MRSA results: from the surface of a section of CoCrFeNiTi4 powder particles after 45 min ML (a); after 60 min ML (b); CoCrFeNiTi8 after 45 min ML (c); from points inside a CoCrFeNiTi12 powder particle after 60 min ML (d).

Download (92KB)
5. Fig. 4. X-ray diffraction patterns of CoCrFeNiTi8 powders after 15, 30, 45 and 60 min of ML.

Download (16KB)
6. Fig. 5. SEM images of microstructures of compacts CoCrFeNiTi4 (a), CoCrFeNiTi8 (b), CoCrFeNiTi12 (c), CoCrFeNiTi4(TiH2) (d), CoCrFeNiTi8(TiH2) (d), CoCrFeNiTi12(TiH2) (e). Single dark rounded inclusions, spherical inclusions with dark boundaries and clusters of small dark inclusions are outlined by red dashed, turquoise dotted and yellow solid lines, respectively.

Download (106KB)
7. Fig. 6. Results of MRSA of compacts: CoCrFeNiTi4 — from the surface of the section (a); CoCrFeNiTi4 — from selected points (b, c); CoCrFeNiTi8 — from the surface of the section (d); CoCrFeNiTi8 — from selected points (d); CoCrFeNiTi12 — from the surface of the section (e); CoCrFeNiTi12 — from selected points (g, h).

Download (191KB)
8. Fig. 7. Results of MRSA of compacts: CoCrFeNiTi4(TiH2) — from the surface of the section (a); CoCrFeNiTi4(TiH2) — from selected points (b-d); CoCrFeNiTi8(TiH2) — from the surface of the section (d); CoCrFeNiTi8(TiH2) — from selected points (e); CoCrFeNiTi12(TiH2) — from the surface of the section (g); CoCrFeNiTi12(TiH2) — from selected points (h).

Download (265KB)
9. Fig. 8. X-ray diffraction patterns of Co–Cr–Fe–Ni–Ti compacts obtained by the GP method. The initial powder mixture contained Ti in the form of metallic powder (a) or in the form of TiH2 (b).

Download (31KB)
10. Fig. 9. Microstructure of fractures of CoCrFeNiTi4 (a, d), CoCrFeNiTi8 (b, d), and CoCrFeNiTi12 (c, e) compacts after three-point bending tests. The initial powder mixture contained Ti in the form of metallic powder (a–c) or in the form of TiH2 (b–e).

Download (95KB)
11. Fig. 10. Stress-strain graphs of Co–Cr–Fe–Ni–Ti alloys during three-point bending tests.

Download (16KB)
12. Fig. 11. Friction force curves and wear track topography for samples containing 4, 8, 12% Ti. The initial powder mixture contained Ti in the form of metal powder (a) or in the form of TiH2 (b).

Download (70KB)