Metastable nanoprecipitates in alloys. Phenomenology and atomistic Simulation
- Authors: Razumov I.K.1, Gornostyrev Y.N.1
-
Affiliations:
- Miheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences
- Issue: Vol 125, No 11 (2024)
- Pages: 1335-1342
- Section: СТРУКТУРА, ФАЗОВЫЕ ПРЕВРАЩЕНИЯ И ДИФФУЗИЯ
- URL: https://innoscience.ru/0015-3230/article/view/681749
- DOI: https://doi.org/10.31857/S0015323024110012
- EDN: https://elibrary.ru/INIZHQ
- ID: 681749
Cite item
Abstract
Metastable disperse states arising from decomposition in alloys are of considerable interest and have an important practice-related significance, providing high strength properties. Recently, the stabilization mechanism of disperse states through the formation of a shell enriched in alloying elements has attracted special attention. The paper presents a concise overview of the theoretical concepts pertaining to the formation and stabilization of disperse states in alloys, along with recent findings from first-principles atomistic simulations of Al–Cu–X, Fe–Cu–X, and Al–Sc–Zr alloys, wherein precipitates with a core–shell structure have been observed. Furthermore, the paper addresses the conditions of kinetic and thermodynamic stabilization of precipitates in relation to coalescence processes during annealing.
Full Text

About the authors
I. K. Razumov
Miheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences
Author for correspondence.
Email: rik@imp.uran.ru
Russian Federation, Ekaterinburg, 620108
Y. N. Gornostyrev
Miheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences
Email: rik@imp.uran.ru
Russian Federation, Ekaterinburg, 620108
References
- Gleiter H. Nanostructured materials: basic concepts and microstructure // Acta Mater. 2000. V. 48. P. 1–29.
- Valiev R.Z., Zhilyaev A.P., Langdon T.G. Bulk nanostructured materials: Fundamentals and application. New Jersey: Wiley & Sons, 2014. 450 p.
- Jiao Z.B., Luan J.H., Miller M.K., Chung Y.W., Liu C.T. Co-precipitation of nanoscale particles in steels with ultra-high strength for a new era // Mater. Today. 2017. V. 20. № 3. P. 142–154.
- Jiang Q., Yang C.C. Size Efect on the Phase Stability of Nanostructures // Curr. Nanosci. 2008. V. 4. № 2. P. 179–200.
- Gornostyrev Yu.N., Katsnelson M.I. Misfit stabilized embedded nanoparticles in metallic alloys // Phys. Chem. Chem. Phys. 2015. V. 17. P. 27249–27257.
- Chakrabarty S., Nussinov Z. Modulation and correlation lengths in systems with competing interactions // Phys. Rev. B. 2011. V. 84. P. 144402 (8 pp.).
- Deschamps A., Hutchinson C.R. Precipitation kinetics in metallic alloys: Experiments and modeling // Acta Mater. 2021. V. 220. P. 117338 (23 pp.).
- Bray A.J. Theory of Phase Ordering Kinetics // Adv. Phys. 1994. V. 43. № 3. P. 357–459.
- Brucas R., Hafermann H., Katsnelson M.I., Soroka I.L., Eriksson O., Hjorvarsson B. Magnetization and domain structure of bcc Fe81Ni19/Co (001) superlattices // Phys. Rev. B. 2004. V. 69. P. 064411 (8 pp.).
- Lyubina J., Rellinghaus B., Guitfleisch O. and Albreht M. Structure and magnetic properties of L10 — ordered Fe–Pt alloys and nanoparticles / In: Handbook of Magnetic Materials. V. 19. Ed. by K.H.J. Buschow, Elsevier, Amsterdam, 2011. V. 19. P. 291–395.
- Levitas V.I. and Preston D.L. Thermomechanical lattice instability and phase field theory of martensitic phase transformations, twinning and dislocations at large strains // Phys. Lett. A. 2005. V. 343. P. 32–39.
- Levin V.A., Levitas V.I., Zingerman K.M., Freiman E.I. Phase-field simulation of stress-induced martensitic phase transformations at large strains // Intern. J. Solids Structures. 2013. V. 50. P. 2914–2928.
- Leslie W.C., Hornbogen E. Physical metallurgy of steel // In: Physical Metallurgy. Ed. by R.W. Cahn and P. Haasen. Elsevier, Amsterdam, 1996. V. II. P. 1555–1620.
- Khachaturyan A.G. Theory of Structural Transformations in Solids. New York: Wiley, 1983. 574 p.
- Guinier A. Structure of Age-Hardened Aluminium-Copper Alloys // Nature. 1938. V. 142. P. 569–570.
- Preston G.D. The diffraction of X-rays by age-hardering aluminium copper alloys // Proc. Royal Soc. A. 1938. V. 167. P. 526–538.
- Collings E.W. The Physical Metallurgy of Titanium Alloys. ASM, Metals Park, Ohio, 1984. 261 p.
- Kubo H. and Farjami S. Nucleation of athermal omega phase in Cu–Zn system // Mater. Sci. Eng. A. 2006. V. 438–440. P. 181–185.
- Fine M.E., Liu J.Z., and Asta M.D. An unsolved mystery: The composition of bcc Cu alloy precipitates in bcc Fe and steels // Mater. Sci. Eng. A. 2007. V. 463. P. 271–274.
- Rösner H., Koch C.T., Wilde G. Strain mapping along Al–Pb interfaces // Acta Mater. 2010. V. 58. P. 162–172.
- Røyset J., Ryum N. Scandium in aluminium alloys // Int. Mater. Rev. 2005. V. 50. P. 19–44.
- Запорожец Т.В., Подолян О.Н., Гусак А.М. Кинетика роста нанооболочек промежуточной фазы с учетом конечных скоростей реакций на межфазных границах // ФММ. 2014. Т. 115. № 3. C. 285–294.
- Nastar M., Belkacemi L.T., Meslin E., Loyer-Prost M. Thermodynamic model for lattice point defect-mediated semi-coherent precipitation in alloys // Commun. Mater. 2021. V. 2. P. 32 (11 pp.).
- Trelewicz J.R., Schuh C.A. Grain boundary segregation and thermodynamically stable binary nanocrystalline alloys // Phys. Rev. B. 2009. V. 79. № 9. P. 094112 (13 pp.).
- Millett P.C., Selvam R.P., Saxena A. Stabilizing nanocrystalline materials with dopants // Acta Mater. 2007. V. 55. № 7. P. 2329–2336.
- Sharma P., Ganti S. Size-Dependent Eshelby’s Tensor for Embedded Nano-Inclusions in Corporating Surface Energies // J. Appl. Mechanics. 2004. V. 75. P. 663–671.
- Shyam A., Roy S., Shin D., Poplawsky J.D., Allard L.F., Yamamoto Y., Morris J.R., Mazumder B., Idrobo J.C., Rodriguez A., Watkins T.R., Haynes J.A. Elevated temperature microstructural stability in cast AlCuMnZr alloys through solute segregation // Mat. Sci. Eng. A. 2019. V. 765. P. 138279 (8 pp.).
- Petrik M.V., Gornostyrev Yu.N., Korzhavyi P.A. Segregation of alloying elements to stabilize θʹ phase interfaces in Al–Cu based alloys, Scripta Materialia. 2021. V. 202. P. 114006 (8 pp.).
- Kolli R.P., Seidman D.N. The temporal evolution of the decomposition of concentrated multicomponent Fe–Cu-based steel // Acta Mater. 2008. V. 56. P. 2073–2088.
- Gorbatov O.I., Gornostyrev Yu.N., Korzhavyi P.A., Ruban A.V. Effect of Ni and Mn on the formation of Cu precipitates in α-Fe // Scripta Materialia. 2015. V. 102. P. 11–14.
- Clouet E., Lae L., Epicier T., Lefebvre W., Nastar M., Deschamps A. Complex precipitation pathways in multicomponent alloys // Nature Mater. 2006. V. 5. P. 482–488.
- Orthacker A., Haberfehlner G., Taendl J., Poletti M.C., Sonderegger B., Kothleitner G. Diffusion-defining atomic scale spinodal decomposition within nanoprecipitates // Nature Mater. 2018. V. 17. P. 1101–1107.
- Stroev A. Yu., Gorbatov O.I., Gornostyrev Yu.N., Korzhavyi P.A. Ab-initio based modeling of precipitation in Al–(Sc, Zr) alloy. Formation and stability of a core–shell structure // Comp. Mater. Sci. 2023. V. 218. P. 111912 (8 pp.).
- Binder K., Fratzl P. Spinodal decomposition / In: Phase Transformations in Materials. Ed. by G. Kostorz, Wiley Verlag GmbH, Weinheim, 2001. P. 411–480.
- Gorbatov O.I., Razumov I.K., Gornostyrev Yu.N., Razumovskiy V.I., Korzhavyi P.A., Ruban A.V. Role of magnetism in Cu precipitation in α-Fe // Phys. Rev. B. 2013. V. 88. P. 174113 (13 pp.).
- Deschamps A., Militzer M., and Poole W.J. Precipitation Kinetics and Strengthening of a Fe 0.8 wt% Cu Alloy // ISIJ Int. 2001. V. 41. P. 196–205.
- Morral J.E., Cahn J.W. Spinodal Decomposition in Ternary Systems // Acta Met. 1971. V. 19. P. 1037–1067.
- Chen L.Q. Computer simulation of spinodal decomposition in ternary systems // Acta Metall. Mater. 1994. V. 42. № 10. P. 3503–3513.
- Weissmüller J. Alloy effects in nanostructures // Nanostruct. Mater. 1993. V. 3. № 1–6. P. 261–272.
- Разумов И.К. Аномальные дисперсные состояния сплавов, обусловленные сегрегацией примеси на межфазных границах // ФТТ. 2014. Т. 56. № 4. C. 749–753.
- Разумов И.К., Горностырев Ю.Н. Метастабильные дисперсные состояния, возникающие при распаде трехкомпонентного сплава // ФТТ. 2019. Т. 61. № 12. C. 2462–2470.
- Gorbatov O.I., Gornostyrev Yu.N., Korzhavyi P.A. Many-body mechanism of Guinier-Preston zones stabilization in Al–Cu alloys // Scripta Mater. 2017. V. 138. P. 130133 (8 pp.).
- Kim K., Roy A., Gururajan M.P., Wolverton C., Voorhees P.W. First-principles/Phase-field modeling of θʹ precipitation in Al–Cu alloys // Acta Mater. 2017. V. 140. P. 344–354.
- Shin D., Shyam A., Lee S., Yamamoto Y., Haynes J.A. Solute segregation at the Al/θʹ–Al2Cu interface in Al–Cu alloys // Acta Mater. 2017. V. 141. P. 327–340.
- Petrik M.V., Gornostyrev Y.N., Korzhavyi P.A. Point defect interactions with Guinier-Preston zones in Al-Cu based alloys: Vacancy mediated GPZ to θʹ-phase transformation // Scripta Mater. 2019. V. 165. P. 123–127.
- Gorbatov O.I., Delandar A.H., Gornostyrev Yu.N., Ruban A.V., Korzhavyi P.A. First-principle study of interactions between substitutional solutes in bcc iron // J. Nucl. Mater. 2016. V. 475. P. 140–148.
- Vaynman S., Guico R.S., Fine M.E., Maganello S.J. Estimation of atmospheric corrosion of high-strength, low-alloy steels // Metall. Mater Trans. A. 1997. V. 28. № 5. P. 1274–1276.
- Isheim D., Kolli R.P., Fine M.E., Seidman D.N. An atom-probe tomographic study of the temporal evolution of the nanostructure of Fe–Cu based high-strength low-carbon steels // Scripta Mater. 2006. V. 55. № 1. P. 35–40.
- Kapoor M., Isheim D., Ghosh G., Vaynman S., Fine M.E., Chung Y.-W. Aging characteristics and mechanical properties of 1600 MPa body-centered cubic Cu and B2–NiAl precipitation-strengthened ferritic steel // Acta Mater. 2014. V. 73. P. 56–74.
- Kapoor M., Isheim D., Vaynman S., Fine M.E., Chung Y.-W. Effects of increased alloying element content on NiAl-type precipitate formation, loading rate sensitivity, and ductility of Cu- and NiAl-precipitation-strengthened ferritic steels // Acta Mater. 2016. V. 104. P. 166–171.
- Jiao Z.B., Luan J.H., Miller M.K., Liu C.T. Precipitation mechanism and mechanical properties of an ultra-high strength steel hardened by nanoscale NiAl and Cu particles // Acta Mater. 2015. V. 97. P. 58–67.
- Карькин И.Н., Карькина Л.Е., Горностырев Ю.Н., Коржавый П.А. Кинетика ранних стадий распада в разбавленном ОЦК-сплаве Fe–Cu–Ni–Al: МС+МD моделирование // ФТТ. 2019. Т. 61. C. 724–731.
- Карькин И.Н., Карькина Л.Е., Горностырев Ю.Н., Коржавый П.А. Влияние Ni и Al на кинетику распада и стабильность обогащенных Cu выделений в сплаве Fe–Cu–Ni–Al. Результаты MD+ MC-моделирования // ФММ. 2021. Т. 122. № 5. C. 535–540.
- Jiao Z.B., Luan J.H., Miller M.K., Yu C.Y., Liu C.T. Group precipitation and age hardening of nanostructured Fe-based alloys with ultra-high strengths // Sci. Rep. 2016. V. 6. P. 21364 (8 pp.).
- Chen B.A., Pan L., Wang R.H., Liu G., Cheng P.M., Xiao L., Sun J. Effect of solution treatment on precipitation behaviors and age hardening response of Al-Cu alloys with Sc addition // Mater. Sci. Eng. A. 2011. V.530. P. 607–617.
- Кайгородова Л.И., Бродова И.Г., Сельнихина Е.И., Шамшеева О.Р. Влияние малых добавок Sc и Zr на тонкую структуру сплава системы Al–Zn–Mg–Cu после быстрой кристаллизации и высокотемпературного отжига // ФММ. 2000. Т. 90. № 3. С. 74–80.
- Voorhees P.W. Scandium overtakes zirconium // Nature Mater. 2006. V. 5. P. 435–436.
- Senkov O.N., Shagiev M.R., Senkova S.V., Miracle D.B. Precipitation of Al3(Sc, Zr) particles in an Al–Zn–Mg–Cu–Sc–Zr alloy during conventional solution heat treatment and its effect on tensile properties // Acta Mater. 2008. V. 56. P. 3723–3738.
Supplementary files
