Atomistic simulation of Specificities of microstructure formation in binary systems
- Authors: Kichigin R.M.1, Chirkov P.V.1, Karavaev A.V.1, Dremov V.V.1
-
Affiliations:
- Russian Federal Nuclear Center–Zababakhin All-Russian Research Institute of Technical Physics
- Issue: Vol 125, No 11 (2024)
- Pages: 1386-1395
- Section: СТРУКТУРА, ФАЗОВЫЕ ПРЕВРАЩЕНИЯ И ДИФФУЗИЯ
- URL: https://innoscience.ru/0015-3230/article/view/681755
- DOI: https://doi.org/10.31857/S0015323024110074
- EDN: https://elibrary.ru/IMJWES
- ID: 681755
Cite item
Abstract
The selection and verification of interatomic interaction models for molecular dynamics simulation of crystallization from a melt is carried out in relation to binary systems with a significant difference in solidus and liquidus temperatures, using the example of Cu–Ni and Mo–Ni alloys. The potentials used were verified based on thermodynamic calculations of equilibrium melting parameters and on available experimental data. The conditions for the formation, characteristics, and features of the evolution of the crystal structure in the course of solidification of binary systems and alloys with a significant difference in the solidus and liquidus temperatures are determined. Large-scale atomistic calculations of the redistribution of components of a Mo–Ni binary alloy in the course of its crystallization from a melt were carried out.
Full Text

About the authors
R. M. Kichigin
Russian Federal Nuclear Center–Zababakhin All-Russian Research Institute of Technical Physics
Email: chirkovpv@vniitf.ru
Russian Federation, Snezhinsk, Chelyabinsk region, 456770
P. V. Chirkov
Russian Federal Nuclear Center–Zababakhin All-Russian Research Institute of Technical Physics
Author for correspondence.
Email: chirkovpv@vniitf.ru
Russian Federation, Snezhinsk, Chelyabinsk region, 456770
A. V. Karavaev
Russian Federal Nuclear Center–Zababakhin All-Russian Research Institute of Technical Physics
Email: chirkovpv@vniitf.ru
Russian Federation, Snezhinsk, Chelyabinsk region, 456770
V. V. Dremov
Russian Federal Nuclear Center–Zababakhin All-Russian Research Institute of Technical Physics
Email: chirkovpv@vniitf.ru
Russian Federation, Snezhinsk, Chelyabinsk region, 456770
References
- Dremov V.V., Chirkov P.V., Karavaev A.V. Molecular dynamics study of the effect of extended ingrain defects on grain growth kinetics in nanocrystalline copper // Sci. Rep. 2021. V. 11. P. 934.
- Ivanov I.A., Dub V.S., Karabutov A.A., Cherepetskaya E.B., Bychkov A.S., Kudinov I.A., Gapeev A.A., Krivilyov M.D., Simakov N.N., Gruzd S.A., Lomaev S.L., Dremov V.V., Chirkov P.V., Kichigin R.M., Karavaev A.V., Anufriev M. Yu., Kuper K.E. Effect of laser-induced ultrasound treatment on material structure in laser surface treatment for selective laser melting applications // Sci. Rep. 2021. V. 11. P. 23501.
- Karavaev A.V., Chirkov P.V., Kichigin R.M., Dremov V.V. Atomistic simulation of hardening in bcc iron-based alloys caused by nanoprecipitates // Comp. Mat. Sci. 2023. V. 225. P. 112383.
- Mahata A., Zaeem M.A., Baskes M.I. Understanding homogeneous nucleation in solidification of aluminum by molecular dynamics simulations // Model. Simul. Mater. Sci. Eng. 2018. V. 26. P. 025007.
- Daw M.S., Baskes M.I. Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals // Phys. Rev. B. 1984. V. 29. P. 6443.
- Baskes M.I. Modified embedded-atom potentials for cubic materials and impurities // Phys. Rev. B. 1992. V. 46. P. 2727.
- Baskes M.I., Johnson R.A. Modified embedded atom potentials for HCP metals // Model. Simul. Mater. Sci. Eng. 1994. V. 2. P. 147.
- Bartók A.P., Payne M.C., Kondor R., Csányi G. Gaussian Approximation Potentials: The Accuracy of Quantum Mechanics, without the Electrons // Phys. Rev. Lett. 2010. 104. P. 136403.
- Bartók A.P., Kondor R., Csányi G. On representing chemical environments // Phys. Rev. B. 2013. V. 87. P. 184115.
- Deringer V.L., Bartók A.P., Bernstein N., Wilkins D.M., Ceriotti M., Csányi G. Gaussian process regression for materials and molecules // Chem. Rev. 2021. V. 121. P. 10073–10141.
- Thompson A.P., Swiler L.P., Trott C.R. Spectral neighbor analysis method for automated generation of quantum-accurate interatomic potentials // J. Comp. Physics. 2015. V. 285. P. 316–330.
- Shapeev A.V. Moment Tensor Potentials: a class of systematically improvable interatomic potentials // Multiscale Model. Simul. 2016. V. 14. P. 1153–1173.
- Podryabinkin E.V., Shapeev A.V. Active learning of linearly parametrized interatomic potentials // Comput. Mater. Sci. 2017. V. 140. P. 171–180.
- Wang H., Zhang L., Han J., Weinan E. DeePMD-kit: A deep learning package for many-body potential energy representation and molecular dynamics // Comput. Phys. Comm. 2018. V. 228. P. 178–184.
- Zuo Y., Chen C., Li X., Deng Z., Chen Y., Behler J., Csányi G., Shapeev A.V., Thompson A.P., Wood M.A., Ong S.P. Performance and cost assessment of machine learning interatomic potentials // J. Phys. Chem. A. 2020. V. 124. P. 731–745.
- Thompson A.P., Aktulga H.M., Berger R., Bolintineanu D.S., Brown W.M., Crozier P.S., Veld P., Kohlmeyer A., Moore S.G., Nguyen T.D., Trung D. LAMMPS — a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales // Comput. Phys. Commun. 2022. V. 271. P. 108171.
- Stukowski A., Albe K. Extracting dislocations and non-dislocation crystal defects from atomistic simulation data // Model. Simul. Mater. Sci. Eng. 2010. V. 18. P. 015012.
- Stukowski A. Computational analysis methods in atomistic modeling of crystals // J. Metals. 2014. V. 66. P. 399–407.
- Larsen P.M., Schmidt S., Schiotz, J. Robust structural identification via polyhedral template matching // Model. Simul. Mater. Sci. Eng. 2016. V. 24. Р. 055007.
- Freitas R., Asta M., de Koning M. Nonequilibrium free-energy calculation of solids using LAMMPS // Comp. Mat. Sci. 2016. V. 112. P. 333–341.
- de Koning M., Antonelli A. Einstein crystal as a reference system in free energy estimation using adiabatic switching // Phys. Rev. E1996. V. 53. P. 465–474.
- Okamoto H. Phase diagrams for binary alloys // ASM international, Materials Park, OH. 2000. 356 p.
- Зиновьев B.E. Теплофизические свойства металлов при высоких температурах. Справочное издание. М.: Металлургия, 1989. 385 c.
- Sheng H.W., Kramer M.J., Cadien A., Fujita T., Chen M.W. Highly optimized Embedded-Atom-Method potentials for fourteen fcc metals // Phys. Rev. B. 2011. V. 83. P. 134118.
- Li X.-G., Hu C., Chen C., Deng Z., Luo J., Ong S.P. Quantum-accurate spectral neighbor analysis potential models for Ni–Mo binary alloys and fcc metals // Phys. Rev. B. 2018. V. 98. P. 094104.
- Chen C., Deng Z., Tran R., Tang H., Chu I.-H., Ong S.P. Accurate force field for molybdenum by machine learning large materials data // Phys. Rev. Mat. 2017. V. 1. P. 043603.
- Galvin C.O.T., Burr P.A., Cooper M.W.D., Fossati P.C.M., Grimes R.W. Using molecular dynamics to predict the solidus and liquidus of mixed oxides (Th, U)O2, (Th, Pu)O2 and (Pu, U)O2 // J. Nuc. Mat. 2020. V. 534. P. 152127.
- Galvin C.O.T., Grimes R.W., Burra P.A. A molecular dynamics method to identify the liquidus and solidus in a binary phase diagram // Comp. Mat. Science. 2021. V. 186. P. 110016.
- Nose S. A unified formulation of the constant temperature molecular dynamics methods // J. Chem. Phys. 1984. V. 81. P. 511.
- Hoover W.G. Canonical dynamics: Equilibrium phase-space distributions // Phys. Rev. A. 1985. V. 31. P. 1695.
- Bastow B.D., Kirkwood D.H. Solid/liquid equilibrium in the copper–nickel–tin system determined by microprobe analysis // J. Institute of Metal. 1971. V. 99. P. 277.
- Feest E.A., Doherty R.D. The Cu–Ni equilibrium phase diagram // J. Institute of Metal. 1971. V. 3. P. 102.
- Predel B., Mohs R. Thermodynamische Untersuchung flüssiger Nickel–Kupfer-Legierungen // Archiv für das Eisenhüttenwesen. 1971. V. 42. P. 575.
- Schurmann E., Schultz E. Untersuchengen zum Verlauf der Liquidus und Solidus linien in den Systemen Kupfer-Mangan und Kupfer–Nickel // International Journal of Materials Research. 1971. V. 62. P. 758.
- Zhou S.H., Wang Y., Jiang C., Zhu J.Z., Chen L.-Q., Liu Z.-K. First-principles calculations and thermodynamic modeling of the Ni–Mo system // Mater. Sci. Eng. A. 2005. V. 39. P. 288.
- Casselton R.E.W., Hume-Rothery W. The equilibrium diagram of the system molybdenum-nickel // J. Less-Common Met. 1964. V. 7. P. 212–221.
- Wicker A., Allibert C., Driole J., Bonnier E. Etude dʹéquilibres de phases dans les systèmes Ni-Nb-Mo, Ni–Nb et Ni–Mo // Comptes rendus hebdomadaires des séances de l'Académie des sciences: Sér. C. 1971. V. 271. P. 273.
- Kang S.-J., Song Y.-D., Kaysser W.A., Hofmann H. Determination of Mo solidus in the Mo-Ni system by electrolytic phase separation method // Intern. J. Mater. Research. 1984. V. 75. P. 86.
- Yaqoob K., Joubert J.-M. Experimental investigation of the Mo–Ni–Re system // J. All. Comp. 2013. V. 559. P. 101.
Supplementary files
