Atomistic simulation of Specificities of microstructure formation in binary systems

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The selection and verification of interatomic interaction models for molecular dynamics simulation of crystallization from a melt is carried out in relation to binary systems with a significant difference in solidus and liquidus temperatures, using the example of Cu–Ni and Mo–Ni alloys. The potentials used were verified based on thermodynamic calculations of equilibrium melting parameters and on available experimental data. The conditions for the formation, characteristics, and features of the evolution of the crystal structure in the course of solidification of binary systems and alloys with a significant difference in the solidus and liquidus temperatures are determined. Large-scale atomistic calculations of the redistribution of components of a Mo–Ni binary alloy in the course of its crystallization from a melt were carried out.

Full Text

Restricted Access

About the authors

R. M. Kichigin

Russian Federal Nuclear Center–Zababakhin All-Russian Research Institute of Technical Physics

Email: chirkovpv@vniitf.ru
Russian Federation, Snezhinsk, Chelyabinsk region, 456770

P. V. Chirkov

Russian Federal Nuclear Center–Zababakhin All-Russian Research Institute of Technical Physics

Author for correspondence.
Email: chirkovpv@vniitf.ru
Russian Federation, Snezhinsk, Chelyabinsk region, 456770

A. V. Karavaev

Russian Federal Nuclear Center–Zababakhin All-Russian Research Institute of Technical Physics

Email: chirkovpv@vniitf.ru
Russian Federation, Snezhinsk, Chelyabinsk region, 456770

V. V. Dremov

Russian Federal Nuclear Center–Zababakhin All-Russian Research Institute of Technical Physics

Email: chirkovpv@vniitf.ru
Russian Federation, Snezhinsk, Chelyabinsk region, 456770

References

  1. Dremov V.V., Chirkov P.V., Karavaev A.V. Molecular dynamics study of the effect of extended ingrain defects on grain growth kinetics in nanocrystalline copper // Sci. Rep. 2021. V. 11. P. 934.
  2. Ivanov I.A., Dub V.S., Karabutov A.A., Cherepetskaya E.B., Bychkov A.S., Kudinov I.A., Gapeev A.A., Krivilyov M.D., Simakov N.N., Gruzd S.A., Lomaev S.L., Dremov V.V., Chirkov P.V., Kichigin R.M., Karavaev A.V., Anufriev M. Yu., Kuper K.E. Effect of laser-induced ultrasound treatment on material structure in laser surface treatment for selective laser melting applications // Sci. Rep. 2021. V. 11. P. 23501.
  3. Karavaev A.V., Chirkov P.V., Kichigin R.M., Dremov V.V. Atomistic simulation of hardening in bcc iron-based alloys caused by nanoprecipitates // Comp. Mat. Sci. 2023. V. 225. P. 112383.
  4. Mahata A., Zaeem M.A., Baskes M.I. Understanding homogeneous nucleation in solidification of aluminum by molecular dynamics simulations // Model. Simul. Mater. Sci. Eng. 2018. V. 26. P. 025007.
  5. Daw M.S., Baskes M.I. Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals // Phys. Rev. B. 1984. V. 29. P. 6443.
  6. Baskes M.I. Modified embedded-atom potentials for cubic materials and impurities // Phys. Rev. B. 1992. V. 46. P. 2727.
  7. Baskes M.I., Johnson R.A. Modified embedded atom potentials for HCP metals // Model. Simul. Mater. Sci. Eng. 1994. V. 2. P. 147.
  8. Bartók A.P., Payne M.C., Kondor R., Csányi G. Gaussian Approximation Potentials: The Accuracy of Quantum Mechanics, without the Electrons // Phys. Rev. Lett. 2010. 104. P. 136403.
  9. Bartók A.P., Kondor R., Csányi G. On representing chemical environments // Phys. Rev. B. 2013. V. 87. P. 184115.
  10. Deringer V.L., Bartók A.P., Bernstein N., Wilkins D.M., Ceriotti M., Csányi G. Gaussian process regression for materials and molecules // Chem. Rev. 2021. V. 121. P. 10073–10141.
  11. Thompson A.P., Swiler L.P., Trott C.R. Spectral neighbor analysis method for automated generation of quantum-accurate interatomic potentials // J. Comp. Physics. 2015. V. 285. P. 316–330.
  12. Shapeev A.V. Moment Tensor Potentials: a class of systematically improvable interatomic potentials // Multiscale Model. Simul. 2016. V. 14. P. 1153–1173.
  13. Podryabinkin E.V., Shapeev A.V. Active learning of linearly parametrized interatomic potentials // Comput. Mater. Sci. 2017. V. 140. P. 171–180.
  14. Wang H., Zhang L., Han J., Weinan E. DeePMD-kit: A deep learning package for many-body potential energy representation and molecular dynamics // Comput. Phys. Comm. 2018. V. 228. P. 178–184.
  15. Zuo Y., Chen C., Li X., Deng Z., Chen Y., Behler J., Csányi G., Shapeev A.V., Thompson A.P., Wood M.A., Ong S.P. Performance and cost assessment of machine learning interatomic potentials // J. Phys. Chem. A. 2020. V. 124. P. 731–745.
  16. Thompson A.P., Aktulga H.M., Berger R., Bolintineanu D.S., Brown W.M., Crozier P.S., Veld P., Kohlmeyer A., Moore S.G., Nguyen T.D., Trung D. LAMMPS — a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales // Comput. Phys. Commun. 2022. V. 271. P. 108171.
  17. Stukowski A., Albe K. Extracting dislocations and non-dislocation crystal defects from atomistic simulation data // Model. Simul. Mater. Sci. Eng. 2010. V. 18. P. 015012.
  18. Stukowski A. Computational analysis methods in atomistic modeling of crystals // J. Metals. 2014. V. 66. P. 399–407.
  19. Larsen P.M., Schmidt S., Schiotz, J. Robust structural identification via polyhedral template matching // Model. Simul. Mater. Sci. Eng. 2016. V. 24. Р. 055007.
  20. Freitas R., Asta M., de Koning M. Nonequilibrium free-energy calculation of solids using LAMMPS // Comp. Mat. Sci. 2016. V. 112. P. 333–341.
  21. de Koning M., Antonelli A. Einstein crystal as a reference system in free energy estimation using adiabatic switching // Phys. Rev. E1996. V. 53. P. 465–474.
  22. Okamoto H. Phase diagrams for binary alloys // ASM international, Materials Park, OH. 2000. 356 p.
  23. Зиновьев B.E. Теплофизические свойства металлов при высоких температурах. Справочное издание. М.: Металлургия, 1989. 385 c.
  24. Sheng H.W., Kramer M.J., Cadien A., Fujita T., Chen M.W. Highly optimized Embedded-Atom-Method potentials for fourteen fcc metals // Phys. Rev. B. 2011. V. 83. P. 134118.
  25. Li X.-G., Hu C., Chen C., Deng Z., Luo J., Ong S.P. Quantum-accurate spectral neighbor analysis potential models for Ni–Mo binary alloys and fcc metals // Phys. Rev. B. 2018. V. 98. P. 094104.
  26. Chen C., Deng Z., Tran R., Tang H., Chu I.-H., Ong S.P. Accurate force field for molybdenum by machine learning large materials data // Phys. Rev. Mat. 2017. V. 1. P. 043603.
  27. Galvin C.O.T., Burr P.A., Cooper M.W.D., Fossati P.C.M., Grimes R.W. Using molecular dynamics to predict the solidus and liquidus of mixed oxides (Th, U)O2, (Th, Pu)O2 and (Pu, U)O2 // J. Nuc. Mat. 2020. V. 534. P. 152127.
  28. Galvin C.O.T., Grimes R.W., Burra P.A. A molecular dynamics method to identify the liquidus and solidus in a binary phase diagram // Comp. Mat. Science. 2021. V. 186. P. 110016.
  29. Nose S. A unified formulation of the constant temperature molecular dynamics methods // J. Chem. Phys. 1984. V. 81. P. 511.
  30. Hoover W.G. Canonical dynamics: Equilibrium phase-space distributions // Phys. Rev. A. 1985. V. 31. P. 1695.
  31. Bastow B.D., Kirkwood D.H. Solid/liquid equilibrium in the copper–nickel–tin system determined by microprobe analysis // J. Institute of Metal. 1971. V. 99. P. 277.
  32. Feest E.A., Doherty R.D. The Cu–Ni equilibrium phase diagram // J. Institute of Metal. 1971. V. 3. P. 102.
  33. Predel B., Mohs R. Thermodynamische Untersuchung flüssiger Nickel–Kupfer-Legierungen // Archiv für das Eisenhüttenwesen. 1971. V. 42. P. 575.
  34. Schurmann E., Schultz E. Untersuchengen zum Verlauf der Liquidus und Solidus linien in den Systemen Kupfer-Mangan und Kupfer–Nickel // International Journal of Materials Research. 1971. V. 62. P. 758.
  35. Zhou S.H., Wang Y., Jiang C., Zhu J.Z., Chen L.-Q., Liu Z.-K. First-principles calculations and thermodynamic modeling of the Ni–Mo system // Mater. Sci. Eng. A. 2005. V. 39. P. 288.
  36. Casselton R.E.W., Hume-Rothery W. The equilibrium diagram of the system molybdenum-nickel // J. Less-Common Met. 1964. V. 7. P. 212–221.
  37. Wicker A., Allibert C., Driole J., Bonnier E. Etude dʹéquilibres de phases dans les systèmes Ni-Nb-Mo, Ni–Nb et Ni–Mo // Comptes rendus hebdomadaires des séances de l'Académie des sciences: Sér. C. 1971. V. 271. P. 273.
  38. Kang S.-J., Song Y.-D., Kaysser W.A., Hofmann H. Determination of Mo solidus in the Mo-Ni system by electrolytic phase separation method // Intern. J. Mater. Research. 1984. V. 75. P. 86.
  39. Yaqoob K., Joubert J.-M. Experimental investigation of the Mo–Ni–Re system // J. All. Comp. 2013. V. 559. P. 101.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Scheme for determining the equilibrium concentrations of substances in a melt and a FCC crystal for binary systems using the CMI method using the Cu–Ni example at a temperature of T = 1700 K. The left column shows nickel (red) and copper (blue) atoms, the right column shows the structures of the samples (green is FCC crystal, gray is liquid). Lines: a is a two—phase system at the initial moment of modeling; b is crystal growth with a lack of copper in the melt; c is crystal melting with an excess of copper in the melt; d is the crystal/liquid boundary in equilibrium.

Download (263KB)
3. Fig. 2. Binary phase diagram (solidus and liquidus lines) for the binary Cu–Ni alloy: the red line with shaded hexagons is calculated using the CMI method (this work), the remaining markers show the experimental results [31-34]; the dashed line is an approximation of the totality of experimental data; the turquoise lines are the results of calculations of the solidus and liquidus lines using the CMI method from [28].

Download (143KB)
4. Fig. 3. Movement of the BCC-crystal/liquid boundary (column on the left — BCC-crystal is shown in blue, melt is shown in gray) and nickel concentration (column on the right — nickel atoms are shown in blue, molybdenum atoms are not shown) in the sample at various time points: a – the beginning of the calculation t = 0; b – the moment of time t = 5 ns; c – the moment of time t = 11 ns; d – the moment of the end of the calculation, corresponding to t = 19 ns.

Download (983KB)
5. Fig. 4. Nickel concentration profiles in the system along the longest direction perpendicular to the crystal–liquid interface at the time points shown in Fig. 3.

Download (126KB)
6. Fig. 5. Binary phase diagram (solidus and liquidus lines) for the Mo–Ni system: the dashed line is the results of thermodynamic calculations using the CALPHAD method [35], the symbols are experimental data [36-39], the orange line is the results of KMD modeling with SNAP potential obtained in [26], the red line is the KMD calculation using the CMI method (this work), the black unpainted square — the initial concentration of nickel in the melt, black shaded squares — the equilibrium concentrations of nickel in the BCC crystal and the melt, obtained by the crystal growth method.

Download (119KB)
7. Fig. 6. States of the system (only nickel atoms are shown; in the crystallized regions, the nickel content is noticeably lower) at different time points (different stages of BCC structure growth) of KMD modeling of the growth of BCC crystallites in the Mo c 14 at alloy. % Ni at a temperature of T = 2700 K.

Download (2MB)
8. Rhys. 7. Profile nickel concentrations in modelled alloy sample .14 at. % Apostille per moment time (a) urgencies = 6 NS and (B) urgencies = 10 NS.

Download (254KB)