Atomistic modeling of impurity diffusion in the grain boundary of Σ3(112) in BCC iron

Cover Page

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The article presents an atomistic DFT analysis of the diffusion of chromium, nickel, and copper impurity atoms in bcc iron both in the bulk and along the Σ3(112) grain boundary. The contributions of the vacancy and interstitial mechanisms of impurity atom transfer are investigated, and the directions of preferential diffusion are determined. The temperature dependences of the diffusion coefficients are calculated taking into account the presence of the magnetic moment of the solution atoms, as well as the temperature dependence of the magnetization. The temperature dependences of the diffusion coefficients of nonmagnetic chromium and copper impurities in the bulk and along the Σ3(112) grain boundary are similar to the corresponding dependences for the self-diffusion of iron atoms. The dependences of the diffusion coefficients of nickel atoms are characterized by a stronger anisotropy of transfer along the grain boundary in comparison with the considered nonmagnetic impurities.

Full Text

Restricted Access

About the authors

A. I. Kochaev

Ulyanovsk State University

Author for correspondence.
Email: a.kochaev@gmail.com
Russian Federation, Ulyanovsk, 432017

P. E. L’vov

Ulyanovsk State University

Email: a.kochaev@gmail.com
Russian Federation, Ulyanovsk, 432017

References

  1. Peng Z., Meiners T., Lu Y., Liebscher C.H., Kostka A., Raabe D., Gault B. Quantitative analysis of grain boundary diffusion, segregation and precipitation at a sub-nanometer scale // Acta Mater. 2022. V. 225. P. 117522.
  2. Thuvander M., Andersson M., Stiller K. Atom probe tomography investigation of lath boundary segregation and precipitation in a maraging stainless steel // Ultramicroscopy. 2013. V. 132. P. 265–270.
  3. Разумов И.К., Ермаков А.Е., Горностырев Ю.Н., Страумал Б.Б. Неравновесные фазовые превращения в сплавах при интенсивной пластической деформации // Усп. Физич. наук. 2020. Т. 190. C. 785–810.
  4. Straumal B.B., Dobatkin S.V., Rodin A.O., Protasova S.G., Mazilkin A.A., Goll D., Baretzky B. Structure and properties of nanograined Fe–C alloys after severe plastic deformation // Adv. Eng. Mater. 2011. V. 13. № 6. P. 463–469.
  5. Бескоровайный Н.М., Калин Б.А., Платонов П.А., Чернов И.И. Конструкционные материалы ядерных реакторов. М.: Энергоатомиздат, 1995. 215 с.
  6. Pareige C., Etienne A., Gueye P.-M., Medvedev A., Kaden C., Konstantinovic M.J., Malerba L. Solute rich cluster formation and Cr precipitation in irradiated Fe–Cr–(Ni, Si, P) alloys: ion and neutron irradiation // J. Nuclear Mater. 2022. V. 572. P. 154060.
  7. Chen Qi, Hu R., Jin S., Xue F., Sha G. Irradiation-induced segregation/desegregation at grain boundaries of a ferritic Fe–Mn–Si steel // Acta Materialia. 2021. V. 220. P. 117297.
  8. Mai H.L., Cui X.-Y., Scheiber D., Romaner L.R., Simon P. The segregation of transition metals to iron grain boundaries and their effects on cohesion // Acta Mater. 2022. V. 231. P. 117902.
  9. Dangwal S., Edalati K., Valiev R.Z., Langdon T.G. Breaks in the Hall–Petch Relationship after Severe Plastic Deformation of Magnesium, Aluminum, Copper, and Iron // Crystals. 2023. V. 13. № 3. P. 413.
  10. Xu Z., Shen Y.-F., Naghibzadeh S.K., Peng X., Muralikrishnan V., Maddali S., Menasche D., Krause A.R., Dayal K., Suter R.M., Rohrer G.S. Grain boundary migration in polycrystalline α-Fe // Acta Mater. 2024. V. 264. P. 119541.
  11. Каур И., Густ В. Диффузия по границам зерен и фаз. М.: Машиностроение, 1991. 448 с.
  12. Herzig C., Mishin Y. Grain boundary diffusion in metals / in book eds. Heitjans P., Kärger J. Diffusion in condensed matter. Berlin-Heidelberg: Springer-Verlag, 2005. P. 337–366.
  13. Hoffman R.E. Anisotropy of grain boundary self-diffusion // Acta Metal. 1956. V. 4. № 1. P. 97–98.
  14. L'vov P.E., Sibatov R.T., Svetukhin V.V. Anisotropic grain boundary diffusion in binary alloys: Phase-field approach // Mater. Today Comm. 2023. V. 35. P. 106209.
  15. Tikhonchev M., Meftakhutdinov R., L’vov P. Mixing enthalpy near grain boundaries in Fe–Cr alloy: The results of atomistic simulation // J. Nuclear Mater. 2023. V. 585. P. 154611.
  16. Kochaev A., L’vov P. Anisotropic diffusion in symmetric tilt grain boundaries in bcc iron: a DFT study // Materialia. 2023. V. 32. P. 101953.
  17. Tikhonchev M. MD simulation of vacancy and interstitial diffusion in FeCr alloy // Phys. Scripta. 2023. V. 98. P. 095927.
  18. Ступак М.Е., Уразалиев М.Г., Попов В.В. Атомистическое моделирование симметричной и асимметричных границ зерен наклона Σ5 ❬001❭ в ниобии: структура, энергия, точечные дефекты, зернограничная самодиффузия // ФММ. 2023. T. 124. № 8. C. 732–738.
  19. Уразалиев М.Г., Ступак М.Е., Попов В.В. Атомистическое моделирование самодиффузии и диффузии со вдоль симметричных границ зерен наклона [2 1 1 0] в α-Ti // ФММ. 2023. T. 124. № 9. C. 861–872.
  20. Koju R.K., Mishin Y. Atomistic study of grain-boundary segregation and grain-boundary diffusion in Al–Mg alloys // Acta Mater. V. 201. P. 596–603.
  21. Starikov S., Mrovec M., Drautz R. Study of grain boundary self-diffusion in iron with different atomistic models // Acta Mater. 2020. V. 188 P. 560–569.
  22. Versteylen C.D., van Dijk N.H., Sluiter M.H.F. First-principles analysis of solute diffusion in dilute bcc Fe-X alloys // Phys. Rev. B. 2017. V. 96. P. 094105.
  23. Sholl D.S. Using density functional theory to study hydrogen diffusion in metals: a brief overview // J. Alloys Compounds. 2007. V. 446–447. P. 462–468.
  24. Van de Walle C.G., Neugebauer J. First-principles calculations for defects and impurities: Applications to III-nitrides // J. Appl. Phys. 2004. V. 95. P. 3851–3879.
  25. Мефтахутдинов Р.М., Тихончев М.Ю., Евсеев Д.А. Исследование структурных и энергетических свойств границ (210) и (130) в железе и сплаве Fe–Cr // ФММ. 2023. T. 124. № 5. C. 384–391.
  26. Kochaev A., Efimov V., Kaya S., Flores-Moreno R., Katin K., Maslov M. On point perforating defects in bilayer structures // Phys. Chem. Chem. Phys. 2023. V. 25. P. 30477–30487.
  27. Смирнова Н.А. Методы статистической термодинамики в физической химии. М.: Высшая школа, 1982. 456 с.
  28. Mills G., Jonsson H., Schenter G.K. Reversible work transition state theory: application to dissociative adsorption of hydrogen // Surface Science. 1995. V. 324. P. 305–337.
  29. Smidstrup S., Pedersen A., Stokbro K., Jónsson H. Improved initial guess for minimum energy path calculations // J. Chem. Phys. 2014. V. 140. P. 214106.
  30. Kistanov A.A., Kripalani D.R., Cai Y., Dmitriev S.V., Zhou K., Zhang Y.-W. Ultrafast diffusive cross-sheet motion of lithium through antimonene with 2+1 dimensional kinetics // J. Mater. Chem. A. 2019. V. 7. P. 2901–2907.
  31. Poletaev G.M., Kaygorodova V.M., Elli G.A., Uzhakina O.M., Baimova J.A. Research of the atomic clusters diffusion over the (111) and (100) surfaces of Ni crystal // Letters on Materials. 2014. V. 4. P. 218–221.
  32. Truhlar D.G., Garrett B.C., Klippenstein S.J. Current status of transition-state theory // J. Phys. Chem. 1996. V. 100. P. 12771–12800.
  33. Iijima Y. Diffusion in high-purity iron: Influence of magnetic transformation on diffusion // J. Phase Equil. Diffusion. 2005. Т. 26. P. 466–471.
  34. Perdew J.P., Burke K., Ernzerhof M. Generalized gradient approximation made simple // Phys. Rev. Letters. 1996. V. 77. P. 3865–3868.
  35. Smidstrup S., Markussen T., Vancraeyveld P., Wellendorff J., Schneider J., Gunst T., Verstichel B., Stradi D., Khomyakov P.A., Vej-Hansen U.G., Lee M.-E., Chill S.T., Rasmussen F., Penazzi G., Corsetti F., Ojanperä A., Jensen K., Palsgaard M.L.N., Martinez U., Blom A., Brandbyge M., Stokbro K. QuantumATK: an integrated platform of electronic and atomic-scale modelling tools // J. Phys.: Condensed Matter. 2019. V. 32. P. 015901.
  36. Zheng H., Li X.-G., Tran R., Chen C., Horton M., Winston D., Persson K.A., Ong S.P. Grain boundary properties of elemental metals // Acta Mater. 2020. V. 186. P. 40–49.
  37. Shu X., Chongyu W. Self-diffusion of Fe and diffusion of Ni in Fe calculated with MAEAM theory // Physica B: Condensed Matter. 2004. V. 344. № 1–4. С. 413–422.
  38. Toyama T., Zhao C., Yoshiee T., Yamasaki S., Uno S., Shimodaira M., Miyata H., Suzudo T., Shimizu Y., Yoshida K., Inoue K., Nagai Y. Radiation-enhanced diffusion of copper in iron studied by three-dimensional atom probe // J. Nucl. Mater. 2021. V. 556. P. 153176.
  39. Pérez R.A., Weissmann M. Ab initio study of magnetic effects on diffusion in α-Fe // J. Phys.: Condensed Matter. 2004. V. 16. P. 7033–7043.
  40. Mehrer H. Diffusion in solid metals and alloys. Landolt-Börnstein — Group III Condensed Matter 26: Condensed Matter. Springer Verlag: Berlin Heidelberg. 1990.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Atomistic models of adjacent crystallites forming the S3(112) GZ: a is the basic model cell; b is the model computational domain obtained by translating the model cell in the x and y directions; c are atoms in the GZ plane forming the DCS.

Download (116KB)
3. Fig. 2. Energetically optimal positions of Cr, Ni, and Cu impurity atoms (orange balls) in the plane of the S3(112) GC: a — in the region of the vacancy defect; b — in the interstitial position.

Download (81KB)
4. 3. Schematic representation of individual jumps of impurity atoms, causing: a — vacancy type of diffusion in the y-direction; b — vacancy type of diffusion in the x-direction; c — interstitial type of diffusion in the y-direction; d — interstitial type of diffusion in the x-direction.

Download (175KB)
5. 4. Dependences of the diffusion coefficients of D intrinsic (Fe) and impurity atoms (Cr, Ni, and Cu) on the return temperature of 1/T in BCC iron. Diffusion is carried out by means of a vacancy mechanism in the volume of the material, in the plane of the S3(112) GZ in the y-direction and in the z-direction from the S3(112) GZ to the volume.

Download (277KB)