Electrical resistance, magnetic and thermoelectric properties of the Heusler alloy Co2TiAl obtained by self-propagating high-temperature synthesis

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A thermoelectric Co2TiAl alloy was obtained by the SHS-metallurgy method for the first time. The microstructure and the magnetic and thermoelectric properties of the synthesized alloy were investigated. The maximum value of the Seebeck coefficient and thermoelectric power at room temperature were ‒29.5 μV/K and 1230 μW·m–1·K–2, respectively. The comparison of the influence of the SHS-method modifications on the properties of the synthesized alloy was made. It has been shown that the alloy synthesized by SHS pressing has higher thermoelectric characteristics than the alloy obtained by the SHS-metallurgy method.

Full Text

Restricted Access

About the authors

M. L. Busurina

Merzhanov Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences

Author for correspondence.
Email: busurina@ism.ac.ru
Russian Federation, Chernogolovka, Moscow Region, 142432

A. V. Karpov

Merzhanov Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences

Email: busurina@ism.ac.ru
Russian Federation, Chernogolovka, Moscow Region, 142432

D. E. Andreev

Merzhanov Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences

Email: busurina@ism.ac.ru
Russian Federation, Chernogolovka, Moscow Region, 142432

O. D. Boyarchenko

Merzhanov Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences

Email: busurina@ism.ac.ru
Russian Federation, Chernogolovka, Moscow Region, 142432

Yu. G. Morozov

Merzhanov Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences

Email: busurina@ism.ac.ru
Russian Federation, Chernogolovka, Moscow Region, 142432

D. M. Ikornikov

Merzhanov Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences

Email: busurina@ism.ac.ru
Russian Federation, Chernogolovka, Moscow Region, 142432

A. E. Sytschev

Merzhanov Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences

Email: busurina@ism.ac.ru
Russian Federation, Chernogolovka, Moscow Region, 142432

References

  1. Webster P.J. Heusler Alloys // Contemp. Phys. 1969. V. 10. P. 559–577.
  2. Марченков В.В., Ирхин В.Ю. Полуметаллические ферромагнетики, спиновые бесщелевые полупроводники и топологические полуметаллы на основе сплавов Гейслера: теория и эксперимент // ФММ. 2021. T. 122. № 12. С. 1221–1246.
  3. Васильев А.Н., Бучельников В.Д., Такаги Т., Ховайло В.В, Эстрин Э.И. Ферромагнетики с памятью формы // У.Ф.Н. 2003. Т. 173. № 6. C. 577–608.
  4. Ishida S., Otsuka Y., Kubo Y., Ishida J. Orbital angular momentum in Co2MnSn // J. Phys. F: Met. Phys. 1983. V. 13. P. 1173–1178.
  5. Zimm C., Jastrab A., Sternberg A., Pecharsky V., Gschneidner K. Jr., Osborne M., Anderson I. Description and performance of a near-room temperature magnetic refrigerator / In: Kittel P. (eds) Advances in Cryogenic Engineering. Advances in Cryogenic Engineering. V. 43. Springer, Boston, MA. P. 1759–1766.
  6. Graf T., Felser C., Parkin S.S.P. Simple rules for the understanding of Heusler compounds // Prog. Solid. State Chem. 2011. V. 39. P. 1.
  7. Suzuki R., Kyono T. Thermoelectric properties Fe2TiAl Heusler Alloys // J. Alloys Compounds. 2004. V. 377. P. 38–42.
  8. Hayashi K., Eguchi M., Miyazaki Y. Structural and thermoelectric properties of ternary full-Heusler alloys // J. Electron. Mater. 2017. V. 46. P. 2710–2716.
  9. Шредер Е.И., Филанович А.Н., Чернов Е.Д., Лукоянов А.В., Марченков В.В., Сташкова Л.А. Электронная структура, термоэлектрические и оптические свойства сплавов Гейслера Mn2MeAl (Me = Ti, V, Cr) // ФMM. 2023. T. 124. № 7. C. 608–615.
  10. Gui Z., Wang G., Wang H., Zhang Y., Li Y., Wen X., Li Y., Peng K., Zhou X., Ying J., Chen X. Large improvement of thermoelectric performance by magnetism in Co-based full-Heusler alloys // Adv. Sci. 2023. V. 10. P. 2303967.
  11. Zhang W., Zhao L., Qian Z., Sui Y., Liu Y., Su W., Zhang M., Liu Z., Liu G., Wu G. Magnetic properties of the Heusler alloy Co2TiAl synthesized by melt-spinning technique // J. Alloys Compounds. 2007. V. 431. P. 65–67.
  12. Koller M., Chráska T., Cinert J., Heczko O., Kopeček J., Landa M., Mušálek R., Rameš M., Seiner H., Stráský J., Janeček M. Mechanical and magnetic properties of semi-Heusler/light-metal composites consolidated by spark plasma sintering // Mater. Design. 2017. V. 126. P. 351–357.
  13. Итин В.И., Найбороденко Ю.С. Высокотемпературный синтез интерметаллических соединений. Томск: Изд-во Томcкого ун-та, 1989. 209 c.
  14. Yukhvid V.I. Modifications of SHS processes // Pure Appl. Chem. 1992. V. 64. Iss. 7. P. 977–988.
  15. Andreev D.E., Zakharov K.V., Yukhvid V.I., Schukin A.S., Golosova O.A. Centrifugal high-temperature synthesis of Cox-CrNbWMoAlC cast alloys // High Temp. Mater. Processes. 2023. V. 27. Iss. 3. P. 9–16.
  16. Hu T., Poudeu-Poudeu P., Yang D., Yan Y., Cao Y., Zhang T., Su X., Liu W., Tang X., Cao W. Ultra-fast fabrication of bulk ZrNiSn thermoelectric material through self-propagating high-temperature synthesis combined with in-situ quick pressing // Scripta Mater. 2019. V. 165. P. 140–146.
  17. Xing Y., Liu R., Sun Y.-Y., Chen F., Zhao K., Zhu T., Bai S., Chen L. Self-propagating high-temperature synthesis of half-Heusler thermoelectric materials: reaction mechanism and applicability // J. Mater. Chem. A. 2018. V. 6. P. 19470–19778.
  18. Xing Y., Liu R., Liao J., Zhang Q., Xia X., Wang C., Huang H., Chu J., Gu M., Zhu T., Zhu C., Xu F., Yao D., Zeng Y., Bai S., Uher C., Chen K. High-efficiency half-Heusler thermoelectric modules enabled by selfpropagating synthesis and topologic structure optimization // Energ. Environ Sci. 2019. V. 12. P. 3390–3399.
  19. Бусурина М.Л., Карпов А.В., Щербаков В.А., Грядунов А.Н., Сачкова Н.В., Сычев А.Е. Электрофизические свойства сплава на основе 2Co-Ti-Al, полученного методом СВС-прессования // Перспект. матер. 2020. № 1. С. 5–12.
  20. Karpov A.V., Morozov Y.G., Bunin V.A., Borovinskaya I.P. Effect of Yttria additions on the electrical conductivity of SHS nitride ceramics // Inorg Mater. 2002. V. 38. P. 631–634.
  21. Карпов А.В., Сычев А.Е., Сивакова А.О. Устройство для измерения коэффициента Зеебека термоэлектрических материалов в диапазоне температур 300–800 К // Измер. Техн. 2023. № 8. C. 67–72.
  22. https://nexten.materialsproject.org/materials/mp5407?chemsys=Al-Ti-Co
  23. Буханько Н.Г., Казакова Е.Ф., Соколовская Е.М. Взаимодействие алюминия с кобальтом и титаном // Вестн. Моск. ун-та. Сер. 2. Химия. 2002. Т. 43. № 1. С. 51–57.
  24. Коуров Н.И., Перевозчикова Ю.А., Weber H.W., Марченков В.В. Особенности электросопротивления полуметаллических ферромагнетиков Co2MeAl (Me = Ti, V, Cr, Mn, Fe) // ФТТ. 2016. Т. 58 (7). C. 1311–1316.
  25. Yakhmi J.V., Gopalakrishnan I.K., Grover A.K. Electrical resistivity studies on the Heusler alloys Co2T1–xAl1+x (T = Ti or Zr) // Phys. Status Solidi (A). 1984. V.85. P. 89–92.
  26. Zheng Y., Lu T., Polash M.H., Rasoulianboroujeni M., Liu N., Manley M.E., Deng Y., Sun P.J., Chen X.L, Hermann R.P., Vashaee D., Heremans J.P., Zhao H. Paramagnon drag in high thermoelectric figure of merit Li-doped MnTe // Sci Adv. 2019. V. 5. Iss. 9. P. 1–7.
  27. Witting I.T., Chasapis T.C., Ricci F., Peters M., Heinz N.A., Hautier G., Snyder G.J. The Thermoelectric Properties of Bismuth Telluride // Adv. Electron Mater. 2019. V. 5. Iss. 6. P. 1800904.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Experimental scheme: 1 – initiating coil; 2 – reaction mixture in a quartz glass; 3 – corundum filling; 4 – graphite mold.

Download (19KB)
3. Fig. 2. Diffraction patterns of alloys synthesized from reaction mixture I (a) and mixture II (b).

Download (14KB)
4. Fig. 3. SEM and EDA data (at.%) of Co2TiAl alloy synthesized by SHS metallurgy.

Download (26KB)
5. Fig. 4. Magnetization curves of powder samples: for mixtures I and II and the alloy synthesized in [19].

Download (24KB)
6. Fig. 5. Temperature dependence curves of electrical resistance ρ of the samples synthesized in this work (a) and in [19] (b).

Download (14KB)
7. Fig. 6. Temperature curves of the Seebeck coefficient for Co2TiAl alloys synthesized in this work (a) and in [19] (b).

Download (13KB)
8. Fig. 7. Temperature dependences of the thermoelectric power factor (PF) for the alloys synthesized in this work (a) and in [19] (b).

Download (17KB)