Features of magnetoresistance of a straintronics element in the presence of bistable magnetic states

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The paper presents the findings of a study investigating the dependence of the magnetoresistance of a magnetic straintronics element comprising a multilayer film nanostructure of Ta (5 nm)/FeNiCo (20 nm)/CoFe (10 nm)/Ta (5 nm) layers, successively sputtered on a silicon substrate, on the strength of the external remagnetization magnetic field and compression stress. It has been established that the experimental value of the maximum change in the magnetoresistance of the nano-structure at remagnetization of layers is less than the theoretical value. This discrepancy can be attributed to the random character of the orientational phase transition of the bistable magnetic system in proximity of the critical value of the external magnetic field. A variational method of theoretical approximation of magnetoresistance dependences has been developed, which enables determining unknown parameters of magnetic nanolayers from experimental data, for example, the Han anisotropy field and Hσ magnetostriction field. The developed theory is shown to be in quantitative agreement with experimental results.

Full Text

Restricted Access

About the authors

D. A. Zhukov

Scientific-Manufacturing Complex "Technological Centre”

Author for correspondence.
Email: D.Zhukov@tcen.ru
Russian Federation, Moscow, Zelenograd, 124498

O. P. Polyakov

Lomonosov Moscow State University; Trapeznikov Institute of Control Sciences, Russian Academy of Sciences

Email: D.Zhukov@tcen.ru
Moscow, 119991; Moscow, 117997

P. A. Polyakov

Lomonosov Moscow State University; Trapeznikov Institute of Control Sciences, Russian Academy of Sciences

Email: D.Zhukov@tcen.ru
Russian Federation, Moscow, 119991; Moscow, 117997

S. I. Kasatkin

Trapeznikov Institute of Control Sciences, Russian Academy of Sciences

Email: D.Zhukov@tcen.ru
Russian Federation, Moscow, 117997

V. V. Amelichev

Scientific-Manufacturing Complex "Technological Centre”

Email: D.Zhukov@tcen.ru
Russian Federation, Moscow, Zelenograd, 124498

D. V. Kostyuk

Scientific-Manufacturing Complex "Technological Centre”

Email: D.Zhukov@tcen.ru
Russian Federation, Moscow, Zelenograd, 124498

References

  1. Miao F., Liang S.-J., Cheng B. Straintronics with van der Waals materials // NPJ Quantum Materials. 2021. V. 6. P. 59.
  2. Антонова И.В. Стрейнтроника двумерных неорганических материалов для электронных и оптических приложений // УФН. 2022. Т. 192. № 6. С. 609–641.
  3. Бухараев А.А., Звездин А.К., Пятаков А.П., Фетисов Ю.К. Стрейнтроника – новое направление микро- и наноэлектроники и науки о материалах // УФН. 2018. Т. 188. № 12. С. 1288–1330.
  4. Pan L., Xie Y., Yang H., Li M., Bao X., Shang J., Li R.-W. Flexible Magnetic Sensors // Sensors. 2023. V. 23. P. 4083.
  5. Наумова Л.И., Захаров А.А., Миляев М.А., Бебенин Н.Г., Заворницын Р.С., Максимова И.К., Проглядо В.В., Устинов В.В. Магнитоупругие свойства спиновых клапанов, содержащих слои CoFe/Dy // ФММ. 2023. Т. 124. № 3. С. 264–274.
  6. Mata E.S.O., Bermúdez G.S.C., Ha M., Kosub T., Zabila Y., Fassbender J., Makarov D. Printable anisotropic magnetoresistance sensors for highly compliant electronics // Appl. Phys. 2021. V. 127. P. 280.
  7. Bermúdez G.S.C., Karnaushenko D.D., Karnaushenko D., Lebanov A., Bischoff L., Kaltenbrunner M., Fassbender J., Schmidt O.G., Makarov D. Magnetosensitive e-skins with directional perception for augmented reality // Sci. Adv. 2018. V. 4. № eaao2623.
  8. Наумова Л.И., Чернышова Т.А., Заворницын Р.С., Миляев М.А., Максимова И.К., Проглядо В.В., Захаров А.А., Устинов В.В. Гибкие спиновые клапаны: межслойное взаимодействие и деформационная чувствительность // ФММ. 2021. Т. 122. № 11. С. 1149–1157.
  9. Горев Р.В., Удалов О.Г. Микромагнитное моделирование магнитоупругого эффекта в субмикронных структурах // ФТТ. 2019. Т. 61. № 9. С. 1614–1622.
  10. Bermúdez G.S.C., Makarov D. Magnetosensitive E-Skins for Interactive Devices // Adv. Funct. Mater. 2021. V. 31. P. 2007788.
  11. Rivkin B., Becker C., Akbar F., Ravishankar R., Karnaushenko D.D., Naumann R., Mirhajivarzaneh A., Medina-Sánchez M., Karnaushenko D., Schmidt O.G. Shape-Controlled Flexible Microelectronics Facilitated by Integrated Sensors and Conductive Polymer Actuators // Adv. Intell. Syst. 2021. V. 3. P. 2000238.
  12. Ha M., Bermúdez G.S.C., Kosub T., Mönch I., Zabila Y., Mata E.S.O., Illing R., Wang Y., Fassbender J., Makarov D. Printable and Stretchable Giant Magnetoresistive Sensors for Highly Compliant and Skin-Conformal Electronics // Adv. Mater. 2021. V. 33. P. 2005521.
  13. Bedoya-Pinto A., Donolato M., Gobbi M., Hueso L.E., Vavassori P. Flexible spintronic devices on Kapton // Appl. Phys. Lett. 2014. V. 104. P. 062412.
  14. Zhukov D., Amelichev V., Kasatkin S., Kostyuk D. Investigation of multilayer nanostructures of magnetic straintronics based on the anisotropic magnetoresistive effect // Sensors. 2021. № 21. P. 5785.
  15. Жуков Д.А., Крикунов А.И., Амеличев В.В., Костюк Д.В., Касаткин С.И. Магнитострикционные наноструктуры с гигантским магниторезистивным эффектом для устройств магнитной стрейнтроники // Изв. РАН. Сер. физическая. 2020. Т. 84. № 5. С. 730–732.
  16. Tavassolizadeh A., Rott K., Meier T., Quandt E., Holscher H., Reiss G., Meyners D. Tunnel magnetoresistance sensors with magnetostrictive electrodes: Strain sensors // Sensors. 2016. № 16. P. 1902.
  17. Амеличев В.В., Васильев Д.В., Поляков П.А., Костюк Д.В., Беляков П.А., Касаткин С.И., Поляков О.П., Казаков Ю.В. Влияние формы спин-туннельного элемента на зависимость его магнитосопротивления // ФММ. 2023. Т. 124. № 5. С. 1–6.
  18. King J.P., Chapman J.N., Kools J.C.S., Gillies M.F. On the free layer reversal mechanism of FeMn-biased spin-valves with parallel anisotropy // J. Phys. D: Appl. Phys. 1999. V. 32. P. 1087–1096.
  19. Hunter D., Osborn W., Wang K., Kazantseva N., Hattrick-Simpers J., Suchoski R., Takahashi R., Young M.L., Mehta A., Bendersky L.A., Lofland S.E., Wuttig M., Takeuchi I. Giant magnetostriction in annealed Co1-xFex thin-films // Nat. Comm. 2011. V. 2. P. 518.
  20. Nakamura T., Takeuchi T., Yuito I., Kato K., Saito M., Abe K., Sasaki T., Sekiguchi T., Yamaura S.-I. Effect of annealing on magnetostrictive properties of Fe–Co alloy thin films // Mater. Trans. 2014. V. 55. № 3. P. 556–560.
  21. Касаткин С.И., Муравьëв А.М., Плотникова Н.В., Амеличев В.В., Галушков А.И., Гамарц И.А., Лопатин В.В., Сауров А.Н. Анизотропные магниторезистивные датчики магнитного поля и тока // Автоматика и телемеханика. 2009. № 6. С. 141–152.
  22. Jogschies L., Klaas D., Kruppe R., Rittinger J., Taptimthong P., Wienecke A., Rissing L., Wurz M.C. Recent Developments of Magnetoresistive Sensors for Industrial Applications // Sensors. 2015. V. 15. P. 28665–28689.
  23. Lohndorf M., Duenas T., Tewes M., Quandt E., Ruhrig M., Wecker J. Highly sensitive strain sensors based on magnetic tunneling junctions // Appl. Phys. Lett. 2002. V. 81. № 2. P. 313–315.
  24. Mcguire T.R., Potter R.I. Anisotropic Magnetoresistance in Ferromagnetic 3d Alloys // IEEE Transactions on magnetics. 1975. V. 11. № . 4. P. 1018–1038.
  25. Жуков Д.А., Амеличев В.В., Россуканый Н.М., Руковишников А.И., Костюк Д.В. Контрольно-измерительный стенд исследования магниторезистивных наноструктур с магнитострикционным эффектом // Датчики и системы. 2023. Т. 267. № 2. С. 20–24.
  26. Labrune M., Kools J.C.S., Thiaville A. Magnetization rotation in spin-valve multilayers // Journal of Magn. Magn. Mater. 1997. V. 171. P. 1–15.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Schematic representation of magnetic layers and their physical parameters: orientation of vectors M1, M2, H0, J and OLN.

Download (10KB)
3. Fig. 2. Dependence of cos2φ for stable equilibrium orientations of the magnetization vector M on the dimensionless projection of the external magnetic field strength hx.

Download (8KB)
4. Fig. 3. Experimental (dots) and theoretical (solid line) dependences of the relative magnetoresistance in the absence of deformation stress on the magnetic field strength.

Download (9KB)
5. Fig. 4. Theoretical dependence of cos2φ on the dimensionless magnetic field strength hx for different values ​​of the dimensionless parameter of compressive stress hσ.

Download (17KB)
6. Fig. 5. Experimental (dots) and theoretical (solid line) dependences of the relative magnetoresistance on the magnetic field strength: (a) for mechanical compressive stress σ = 30 MPa; (b) for mechanical compressive stress σ = 65 MPa; (c) for mechanical compressive stress σ = 100 MPa.

Download (32KB)