Evaluation of the threshold displacement energy in Fe–Cr ferritic-martensitic steels

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Molecular dynamics (MD) simulations are applied to study primary damage formation in a Fe–10 at.% Cr binary model alloy. 14 784 events of radiation defect formation are initiated by either Fe or Cr primary knocked-out atoms (PKAs) with PKA energies 100 eV ≤ EPKA≤ 5 keV introduced along twenty-two nonequivalent crystallographic directions. The generated sample is used to calculate the average threshold displacement energies. It is shown that in the considered material the average threshold displacement energy of Fe and Cr atoms is the same and equals ⟨Ed⟩= 24.5 ± 0.6 eV. It is also established that the dependence of Ed on EPKA splits into two linear fragments determined by the governing defect formation mechanism. The formation of isolated point defects at low PKA energies EPKAEcc, where Ecc≈ 0.84 keV, is replaced by defect formation in collision cascades initiated by PKAs with energy EPKAEcc. Using MD simulation results, we modified the cascade function in the Kinchin–Pease model to take into account the dependence of the threshold displacement energy on the PKA energy.

Full Text

Restricted Access

About the authors

R. E. Voskoboinikov

National Research Nuclear University MEPhI; National Research Centre “Kurchatov Institute”

Author for correspondence.
Email: roman.voskoboynikov@gmail.com
Russian Federation, Moscow, 115409; Moscow, 123182

References

  1. Little E.A., Stow D.A. Void-swelling in irons and ferritic steels: II. An experimental survey of materials irradiated in a fast reactor // J. Nuclear Mater. 1979. V. 87:1. P. 25–39.
  2. Hashimoto N., Kasada R., Raj B., Vijayalakshmi M. 3.05 – Radiation Effects in Ferritic Steels and Advanced Ferritic-Martensitic Steels / Konings R.J.M., Stoller R.E. Eds. Comprehensive Nuclear Materials (Second Edition). Elsevier. 2020. P. 226–254.
  3. Masuyama F. New Developments in Steels for Power Generation Boilers / in Ramaswamy Viswanathan, Jack Nutting Eds. Advanced Heat Resistant Steels for Power Generation. IOM Communications Ltd. The Institute of Materials. 1999. Book 708. P. 33–48.
  4. Orr J., Sanderson S.J. Examination of the Potential for 9%Cr1%Mo Steel as Thick Section Tubeplates in Fast Reactors // Proceedings of Topical Conference on Ferritic Alloys for Use in Nuclear Energy Technologies // Metallurgical Soc of AIME. 1984. P. 261–267.
  5. Cawthorne C., Fulton E. Voids in Irradiated Stainless Steel // Nature. 1967. V. 216. P. 575–576.
  6. Garner F.A., Gelles D.S. Neutron-induced swelling of commercial alloys at very high exposures / in: Packan N.H., Stoller R.E., Kumar A.S. Eds. Effects of Radiation on Materials: 14th International Symposium. ASTM STP1046. V. 2. 1990. American Society for Testing and Materials. Philadelphia. P. 673–683.
  7. Bishop J.F.W. Metallurgy in Relation to Reactor Design and Development / Dimensional Stability and Mechanical Behaviour of Irradiated Metals and Alloys. British Nuclear Energy Society. London. 1984. V. 2. P. 115–124.
  8. Bennett J.W., Horton K.E. Materials requirements for liquid metal fast breeder reactors // Metall Trans. A. 1978. V. 9. P. 143–149
  9. Harries D., Standring J., Barnes W., Lloyd G. The U.K. Fast Reactor Materials Programme / in: Brager H., Perrin J. Eds., Effects of Radiation on Materials: Eleventh Conference. ASTM STP 782. American Society for Testing and Materials. Philadelphia PA. 1982. P. 1197–1217.
  10. Chen Y. Irradiation Effects of HT-9 Martensitic Steel // Nucl. Eng. Techn. 2013. V. 45:3. P. 311–322.
  11. Zheng C., Reese E.R., Field K.G., Marquis E., Maloy S.A., Kaoumi D. Microstructure response of ferritic/martensitic steel HT9 after neutron irradiation: effect of dose // J. Nucl. Mater. 2019. V. 523. P. 421–433.
  12. Zheng C., Reese E.R., Field K.G., Marquis E., Maloy S.A., Kaoumi D. Microstructure response of ferritic/martensitic steel HT9 after neutron irradiation: effect of temperature // J. Nucl. Mater. 2020. V. 528. P. 151845.
  13. Toloczko M.B., Garner F.A. Variability of Irradiation Creep and Swelling of HT9 Irradiated to High Neutron Fluence at 400–600 °C / in Nanstad R.K., Hamilton M.L., Garner F.A., Kumar A.S. Eds, Effects of Radiation on Materials: 18th International Symposium. ASTM STP 1325. American Society for Testing and Materials. Philadelphia PA. 1999. P. 765–779.
  14. Field K.G., Eftink B.P., Parish C.M., Saleh T.A., Maloy S.A. Synergies Between α' and Cavity Formation in HT-9 Following High Dose Neutron Irradiation // ORNL/TM-2017/274 Rev. 0. 2017. 18 p.
  15. Maloy S.A., Saleh T.A., Anderoglu O., Romero T.J., Odette G.R., Yamamoto T., Li S., Cole J.I., Fielding R. Characterization and comparative analysis of the tensile properties of five tempered martensitic steels and an oxide dispersion strengthened ferritic alloy irradiated at ≈295 °C to ≈6.5 dpa // J. Nucl. Mater. 2016. V. 468. P. 232–239.
  16. Jiao Z., Taller S., Field K., Yeli G., Moody M.P., Was G.S. Microstructure evolution of T91 irradiated in the BOR60 fast reactor // J. Nucl. Mater. 2018. V. 504. P. 122–134.
  17. Tan L., Kim B.K., Yang Y., Field K.G., Gray S., Li M. Microstructural evolution of neutron-irradiated T91 and NF616 to ~4.3 dpa at 469 °C // J. Nucl. Mater. 2017. V. 493. P. 12–20.
  18. Taller S., Jiao Zh., Field K., Was G.S. Emulation of fast reactor irradiated T91 using dual ion beam irradiation // J. Nucl. Mater. 2019. V. 527. P. 151831.
  19. Adisa S.B., Blair R., Swenson M.J. Comparison of microstructure evolution in Fe2+ or neutron-irradiated T91 at 500 °C // Materialia. 2020. V. 12. P. 100770.
  20. Konstantinović M.J., Stergar E., Lambrecht M., Gavrilov S. Comparison of the mechanical properties of T91 steel from the MEGAPIE, and TWIN-ASTIR irradiation programs // J. Nucl. Mater. 2016. V. 468. P. 228–231.
  21. Dai Y., Krsjak V., Kuksenko V., Schäublin R. Microstructural changes of ferritic/martensitic steels after irradiation in spallation target environments // J. Nucl. Mater. 2018. V. 511. P. 508–522
  22. Tissot O., Gavoille P., Verhaeghe B., Henry J. Mechanical and microstructural analysis of an EM10 wrapper tube after neutron irradiation in Phénix // J. Nucl. Mater. 2021. V. 543. P. 152575.
  23. Dubuisson P., Gilbon D., Séran J.L. Microstructural evolution of ferritic-martensitic steels irradiated in the fast breeder reactor Phénix // J. Nucl. Mater. 1993. V. 205. P. 178–189.
  24. Seran J.L., Levy V., Dubuisson P., Gilbon D., Maillard A., Fissolo A., Touron H., Cauvin R., Chalony A., Le Boulbin E. Behavior under neutron irradiation of the 15–15Ti and EM10 steels used as standard materials of the phenix fuel subassembly / 15 International Symposium on the Effects of Radiation on Materials. 1990. (CEA-CONF-10217). France.
  25. Klueh R.L. Chromium-molybdenum steels for fusion reactor first walls – a review // Nucl. Eng. Design. 1982. V. 72:3. P. 329–344.
  26. Yano Y., Yoshitake T., Yamashita S., Akasaka N., Onose S., Watanabe S., Takahashi H. Effects of Fast Reactor Irradiation Conditions on Tensile and Transient Burst Properties of Ferritic/Martensitic Steel Claddings // J. Nucl. Sci. Techn. 2007. V. 44:12. P. 1535–1542.
  27. Yano Y., Yoshitake T., Yamashita S., Akasaka N., Onose S., Takahashi H. Tensile and transient burst properties of advanced ferritic/martensitic steel claddings after neutron irradiation // J. Nucl. Mater. 2007. V. 367–370. Part A. P. 127–131.
  28. Yano Y., Yamashita S., Ohtsuka S., Kaito T., Akasaka N., Shibayama T., Watanabe S., Takahashi H. Mechanical properties and microstructural stability of 11Cr-ferritic/martensitic steel cladding under irradiation // J. Nucl. Mater. 2010. V. 398:1–3. P. 59–63.
  29. Bagley K., Little E.A., Levy V., Alamo A. European development of ferritic-martensitic steels for fast reactor wrapper applications // CEA-CONF-9369. France. 1987. 25 p.
  30. Ehrlich K., Harries D.R., Möslang A. Characterization and Assessment of Ferritic/ Martensitic Steels // FZKA 5626. Forschungszentrum Karlsruhe GmbH, Karlsruhe. 1997. 101 p.
  31. Klueh R.L., Nelson A.T. Ferritic/martensitic steels for next-generation reactors // J. Nucl. Mater. 2007. V. 371:1–3. P. 37–52.
  32. Dvoriashin A.M., Porollo S.I., Konobeev Yu.V., Garner F.A. Influence of high dose neutron irradiation on microstructure of EP-450 ferritic-martensitic steel irradiated in three Russian fast reactors // J. Nucl. Mater. 2004. V. 329–333. Part A. P. 319–323.
  33. Porollo S.I., Dvoryashin A.M., Ivanov A.A., Konobeev Yu. V., Shulepin S.V. Study of Phase-Structural Transformations Resulting in Low-Temperature Radiation Embrittlement in Ferritic-Martensitic Steel // At Energy. 2019. V. 126. P. 39–45.
  34. Kupriiyanova Y.E., Bryk V.V., Kalchenko A.S., Voyevodin V.N. Single and dual ion irradiation effects on swelling behavior of EP-450 ferritic-martensitic steel // East European J. Phys. 2015. V. 2(1). P. 46–52.
  35. Vilensky O. Yu., Ryabtsov A.V. Mathematical models of radiation-induced swelling and creep of casing steel EP-450 of fast sodium reactors active zone assembly // Problems of Atomic Science and Technology. Series: Nuclear and Reactor Constants. 2017. V. 3:17. P. 199–209.
  36. Грачев А.Ф., Забудько Л.М., Леонтьева-Смирнова М.В., Науменко И.А., Крюков Ф.Н., Чертопятов Е.В., Мариненко Е.Е., Поролло С.И. Кратковременные механические свойства ферритно-мартенситной стали ЭП823-Ш после высокодозового нейтронного облучения // Атомная энергия. 2021. Т. 130. № 6. С. 306–309.
  37. Рогожкин С.В., Искандаров Н.А., Никитин А.А., Хомич А.А., Хорошилов В.В., Богачев А.А., Лукьянчук А.А., Разницын О.А., Шутов А.С., Кулевой Т.В., Федин П.А., Васильев А.Л., Пресняков М.Ю., Леонтьева-Смирнова М.В., Можанов Е.М., Никитина А.А. Исследование микроскопических причин радиационного упрочнения сталей ЭК-181 и ЧС-139 с помощью имитационного облучения ионами // Перспективные материалы. 2019. № 12. C. 39–51.
  38. Митрофанова Н.М., Целищев А.В., Агеев В.С., Буданов Ю.П., Иолтуховский А.Г., Леонтьева-Смирнова М.В., Решетников Ф.Г., Бибилашвили Ю.К., Шкабура И.А., Иванов Ю.А. Конструкционные материалы для оболочек твэлов и чехлов ТВС реактора БН-600 // Изв. вузов. Ядерная энергетика. 2011. № 1. С. 211–264.
  39. Арбузов В.Л., Гощицкий Б.Н., Данилов С.Е., Козлов А.В., Сагарадзе В.В., Чернов В.М. Влияние нейтронного и электронного облучений на структурно-фазовые превращения в стали Fe–12Cr–2W–V–Ta–B с различными исходными термообработками // ФММ. 2019. Т. 120. № 4. С. 395–399.
  40. Блохин Д.А., Леонтьева-Смирнова М.В., Чернов В.М., Блохин А.И., Демин Н.А., Сипачев И.В. Ядерные физические свойства ферритно-мартенситной стали ЭК-181 в условиях длительного нейтронного облучения в быстром БН-600 и термоядерном ДЕМО-РФ реакторах // Перспективные материалы. 2010. № 4. С. 26–33. Blokhin D.A., Leontyeva-Smirnova M.V., Chernov V.M., Blokhin A.I., Demin N.A., Sipachev I.V. Nuclear Physical Properties of Ferritic-Martensitic Steel EK-181 under Conditions of Long-Term Neutron Irradiation in Fast Breeder BN-600 and Fusion DEMO-RF Reactors // Inorganic Mater.: Appl. Research. 2011. V. 2. № 2. P. 129–135.
  41. Aydogan E., Chen T., Gigax J.G., Chen D., Wang X., Dzhumaev P.S., Emelyanova O.V., Ganchenkova M.G., Kalin B.A., Leontiva-Smirnova M., Valiev R.Z., Enikeev N.A., Abramova M.M., Wu Y., Lo W.Y., Yang Y., Short M., Maloy S.A., Garner F.A., Shao L. Effect of self-ion irradiation on the microstructural changes of alloy EK-181 in annealed and severely deformed conditions // J. Nucl. Mater. 2017. V. 487. P. 96–104.
  42. Рогожкин С.В., Искандаров Н.А., Лукьянчук А.А., Шутов А.С., Разницын О.А., Никитин А.А., Залужный А.Г., Кулевой Т.В., Куйбида Р.П., Андрианов С.Л., Леонтьева-Смирнова М.В., Можанов Е.М., Никитина А.А. Исследование наноструктуры ферритно-мартенситной стали ЧС-139 в исходном состоянии и после облучения ионами Fe // Перспективные материалы. 2017. № 11. С. 5–17.
  43. Богданов С.Г., Гощицкий Б.Н., Пархоменко В.Д., Леонтьева-Смирнова М.В., Чернов В.М. Кристаллические и магнитные структуры. Исследование наноструктуры ферритно-мартенситных 12%-хромистых сталей методом малоуглового рассеяния нейтронов // ФТТ. 2014. Т. 56:1. С. 9–20.
  44. Cai W., Li J., Uberuaga B.P., Yip S. 1.18 – Molecular Dynamics / Konings R.J.M., Stoller R.E. Eds. Comprehensive Nuclear Materials (Second Edition). Elsevier, Amsterdam. 2020. V. 1. P. 573–594.
  45. Nordlund K. Historical review of computer simulation of radiation effects in materials // J. Nucl. Mater. 2019. V. 520. P. 273–295.
  46. Stoller R.E., Zarkadoula E. 1.20 – Primary Radiation Damage Formation in Solids / Konings R.J.M., Stoller R.E. Eds. Comprehensive Nuclear Materials (Second Edition). Elsevier, Amsterdam. 2020. V. 1. P. 620–662.
  47. Nordlund K., Sand A.E., Granberg F., Zinkle S.J., Stoller R., Averback R.S., Suzudo T., Malerba L., Banhart F., Weber W.J., Willaime F., Dudarev S., Simeone D. Primary Radiation Damage in Materials: Review of Current Understanding and Proposed New Standard Displacement Damage Model to Incorporate In-cascade Mixing and Defect Production Efficiency Effects / OECD Nuclear Energy Agency, Paris. 2015. 87 p.
  48. Nordlund K., Zinkle S.J., Sand A.E., Granberg F., Averback R.S., Stoller R.E., Suzudo T., Malerba L., Banhart F., Weber W.J., Willaime F., Dudarev S.L., Simeone D. Primary radiation damage: A review of current understanding and models // J. Nucl. Mater. 2018. V. 512. P. 450–479.
  49. Ziegler J.F., Biersack J.P. The Stopping and Range of Ions in Matter / in: Bromley D.A. Eds Treatise on Heavy-Ion Science. 1985. Springer, Boston, MA. P. 93–129.
  50. Ziegler J.F., Biersack J., Littmark U. The Stopping and Range of Ions in Matter 1st ed. Pergamon Press. 1985. 321 p.
  51. Ziegler J.F. SRIM-2003 // Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 2004. V. 219–220. P. 1027–1036.
  52. Ziegler J.F., Biersack J.P., Ziegler M.D. SRIM–The Stopping Range of Ions in Matter. SRIM Co. 2008. 405 p.
  53. Ziegler J.F., Ziegler M.D., Biersack J.P. SRIM – The stopping and range of ions in matter // Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 2010. V. 268. Issues 11–12. P. 1818–1823.
  54. http://www.srim.org/SRIM/SRIM-2013-Std.e.
  55. Norgett M.J., Robinson M.T., Torrens I.M. A proposed method for calculating displacement dose rates // Nucl. Eng. Design. 1975. V. 33:1. P. 50–54.
  56. Kozlov K., Shabashov V., Kozlov A., Sagaradze V., Semyonkin V., Panchenko V., Zamatovskii A., Kataeva N., Nikitina A. Mössbauer spectroscopy investigation of the effect of a high-dose neutron irradiation on the atomic redistribution in the industrial steel EP823 // J. Nucl. Mater. 2022. V. 558. P. 153384.
  57. Bhattacharya A., Chen X., Graening T., Geringer J.W., Reed J., Henry J., Pilloni L., Terentyev D., Puype A., Byun T.S., Katoh Y., Rieth M., Zinkle S.J. Irradiation hardening and ductility loss of Eurofer97 steel variants after neutron irradiation to ITER-TBM relevant conditions // Fusion Eng. Design. 2021. V. 173. P. 112935.
  58. Klimenkov M., Jäntsch U., Rieth M., Möslang A. Correlation of microstructural and mechanical properties of neutron irradiated EUROFER97 steel // J. Nucl. Mater. 2020. V. 538. P. 152231.
  59. Shiba K., Hishinuma A., Tohyama A., Masamura K. Properties of Low Activation Ferritic Steel F82H IEA Heat. Interim Report of IEA Round-robin Tests (1) / JAERI-Tech 97–038. 1997. Japan Atomic Energy Research Institute. 118 p.
  60. Wakai E., Ando M., Matsukawa S., Taguchi T., Yamamoto T., Tomita H., Takada F. Effect of Initial Heat Treatment on DBTT of F82H Steel Irradiated by Neutrons // Fusion Science and Technology. 2005. V. 47:4. P. 856–860.
  61. Huang S.S., Kitao S., Kobayashi Y., Yoshiie T., Xu Q., Sato K., Seto M. Study of neutron irradiation on F82H alloys by Mössbauer spectroscopy // J. Nucl. Mater. 2015. V. 456. P. 266–271.
  62. Coppola R., Lindau R., May R.P., Möslang A., Valli M. Microstructural investigation of low-dose neutron irradiation effects in martensitic steels for nuclear application by means of small-angle neutron scattering // J. Appl. Crystal. 2007. V. 40. P. s142–s146.
  63. Huang Q. FDS Team, Development status of CLAM steel for fusion application // J. Nucl. Mater. 2014. V. 455. Issues 1–3. P. 649–654.
  64. Eich S.M., Beinke D., Schmitz G. Embedded-atom potential for an accurate thermodynamic description of the iron-chromium system // Comp. Mater. Sci. 2015. V. 104. P. 185–192.
  65. Olsson P., Wallenius J., Domain C., Nordlund K., Malerba L. Two-band modeling of α-prime phase formation in Fe-Cr // Phys. Rev. B. 2005. V. 72. P. 214119.
  66. Olsson P., Wallenius J., Domain C., Nordlund K., Malerba L. Erratum: Two-band modeling of α-prime phase formation in Fe-Cr [Phys. Rev. B72 (2005) 214119] // Phys. Rev. B. 2006. V. 74. P. 229906.
  67. Daw M.S., Baskes M.I. Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals // Phys. Rev. B. 1984. V. 29. P. 6443–6453.
  68. Ackland G.J., Mendelev M.I., Srolovitz D.J., Han S., Barashev A.V. Development of an interatomic potential for phosphorus impurities in α-iron // J. Phys.: Condensed Matter. 2004, V. 16. P. S2629–S2642.
  69. Gärtner K., Stock D., Weber B., Betz G., Hautala M., Hobler G., Hou M., Sarite S., Eckstein W., Jiménez-Rodríguez J.J., Pérez-Martín A. M. C., Andribet E.P., Konoplev V., Gras-Marti A., Posselt M., Shapiro M.H., Tombrello T.A., Urbassek H.M., Hensel H., Yamamura Y., and Takeuchi W. Round robin computer simulation of ion transmission through crystalline layers // Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 1995. V. 102. Issues 1–4. P. 183–197.
  70. Biget M., Maury F., Vajda P., Lucasson A., Lucasson P. Atomic displacements in low temperature irradiated chromium crystals // J. Phys. 1979. V. 40. P. 293–298.
  71. Chakarova R., Pontikis V., Wallenius J. Development of FeCr many body potential and cohesion model / Delivery Report WP6, SPIRE project, EC contract no. FIKW-CT-2000–00058. 2002. 25 p.
  72. Maury F., Biget M., Vajda P., Lucasson A., Lucasson P. Anisotropy of defect creation in electron-irradiated iron crystals // Phys. Rev. B. 1976. V. 14. P. 5303–5313.
  73. Juslin N., Nordlund K., Wallenius J., Malerba L. Simulation of threshold displacement energies in FeCr // Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 2007. V. 255. Issue 1. P. 75–77.
  74. Фок В.А. Начала квантовой механики. М.: Наука, 1976. 376 с.
  75. Voskoboinikov R.E., Osetsky Yu.N., Bacon D.J. Statistics of primary damage creation in high-energy displacement cascades in copper and zirconium // Nucl. Instr. Meth. Phys. Res. B. 2006. V. 242. P. 68–70.
  76. Воскобойников Р.Е. Радиационные дефекты в алюминии. Моделирование первичных повреждений в объеме материала // ФММ. 2019. Т. 120. № 1. С. 3–10.
  77. Воскобойников Р.Е. Моделирование первичных радиационных повреждений в никеле // ФММ. 2020. Т. 121. № 1. С. 18–24.
  78. Воскобойников Р.Е. МД моделирование каскадов столкновений в α-Ti. Часть 1. Число дефектов, время релаксации и морфология каскадной области смещений // ФММ. 2023. Т. 124. № 8. С. 671–678.
  79. Voskoboinikov R. A contribution of L10 ordered crystal structure to the high radiation tolerance of γ-TiAl intermetallics // Instr. Meth. Phys. Res. B. 2019. V. 460. P. 92–97.
  80. Voskoboinikov R. An insight into radiation resistance of D019 Ti3Al intermetallics // J. Nucl. Mater. 2019. V. 519. P. 239–246.
  81. Voskoboinikov R. MD simulations of primary damage formation in L12 Ni3Al intermetallics // J. Nucl. Mater. 2019. V. 522. P. 123–135.
  82. Allen M.P., Tildesley D.J. Computer Simulation of Liquids. Clarendon, Oxford. 1987. 408 p.
  83. Lindemann P. Über die Berechnung molekularer Eigenfrequenzen // Phys. Zeitschrift. 1910. V. 11. P. 609–612.
  84. Nordlund K., Averback R.S. Point defect movement and annealing in collision cascades // Phys. Review B. 1997. V. 56. P. 2421–2431.
  85. Voskoboinikov R.E., Osetsky Yu.N., Bacon D.J. Computer simulation of primary damage creation in displacement cascades in copper. I. Defect creation and cluster statistics // J. Nucl. Mater. 2008. V. 377. P. 385–395.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Fitting of the Cr–Cr pair interaction function of the initial potential [64] at short distances.

Download (20KB)
3. Fig. 2. Fitting of the Fe–Cr pair interaction function of the initial potential [64] at short distances.

Download (20KB)
4. Fig. 3. Change in the Maxwell temperature, time integration step, number of displaced atoms (green curve) and Frenkel pairs (black curve) during relaxation of the 2 keV displacement cascade in the disordered Fe–10 at.% Cr solid solution.

Download (21KB)
5. Fig. 4. Dependence of the average threshold displacement energy 〈Ed〉 on EPKA in the disordered binary model alloy Fe–10 at.%Cr. The 95% confidence interval is shown by bars.

Download (16KB)
6. Fig. 5. (a) Cascade damage region created by 5 keV Fe PKA initiated along the 〈134〉 crystallographic direction in the disordered Fe–10 at.% Cr solid solution. (b) Point defects and their clusters remaining after relaxation of the displacement cascade shown in Fig. 5a, with their sizes and orientations preserved. Blue and green colors indicate displaced Fe and Cr atoms, respectively. Red and yellow colors indicate vacant sites that were initially occupied by Fe and Cr atoms, respectively. To view the color image, the reader should refer to the electronic version of the article.

Download (27KB)
7. Fig. 6. (a) Chains of successive substitutional collisions created by 400 eV Fe PKA initiated along the 〈111〉 crystallographic direction in the disordered binary Fe–10 at.% Cr alloy. (b) Isolated point defects remaining after relaxation of the atomic displacements shown in Fig. 6a. Color coding matches Fig. 5.

Download (23KB)