Evolution of the structure of CuCrHf bronze under dynamic channel-angular pressing and subsequent annealing

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The evolution of the structure of chromium–hafnium bronze under high-speed severe plastic deformation by dynamic channel-angular pressing (DCAP) and subsequent annealing has been studied. It is shown that fragmentation of the structure under DCAP occurs predominantly through the twinning mechanism, especially upon two passes. In this case, significant strengthening occurs and the microhardness increases to 1750 MPa. When bronze is annealed, additional strengthening occurs due to the precipitation of Cu5Hf and Cr particles. The structure of bronze after DCAP has high thermal stability, and maximum hardness is achieved after annealing at 400°C. The strengthening and thermal stability of the structure in chromium–hafnium bronze is higher than in hafnium bronze.

Full Text

Restricted Access

About the authors

V. V. Popov

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Author for correspondence.
Email: vpopov@imp.uran.ru
Russian Federation, Ekaterinburg, 620108

E. N. Popova

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Email: vpopov@imp.uran.ru
Russian Federation, Ekaterinburg, 620108

R. M. Falahutdinov

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Email: vpopov@imp.uran.ru
Russian Federation, Ekaterinburg, 620108

S. A. Sudakova

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Email: vpopov@imp.uran.ru
Russian Federation, Ekaterinburg, 620108

E. V. Shorokhov

Federal State Unitary Enterprise “Russian Federal Nuclear Center — Zababakhin All—Russia Research Institute of technical Physics”

Email: vpopov@imp.uran.ru
Russian Federation, Snezhinsk, Chelyabinsk region, 456770

K. V. Gaan

Federal State Unitary Enterprise “Russian Federal Nuclear Center — Zababakhin All—Russia Research Institute of technical Physics”

Email: vpopov@imp.uran.ru
Russian Federation, Snezhinsk, Chelyabinsk region, 456770

V. V. Atroshkin

Federal State Unitary Enterprise “Russian Federal Nuclear Center — Zababakhin All—Russia Research Institute of technical Physics”

Email: vpopov@imp.uran.ru
Russian Federation, Snezhinsk, Chelyabinsk region, 456770

References

  1. Осинцев О.Е., Федоров В.Н. Медь и медные сплавы. Отечественные и зарубежные марки. Справочник. М.: Машиностроение, 2004. 336 с.
  2. Барабаш В.П., Калинин Г.М. Опыт разработки и практического использования базы данных по свойствам материалов внутри корпусных элементов ИТЭР // Вопр. атомной науки и техники. Сер. Материаловедение и новые материалы. 2006. Вып. 2(67). С. 450–458.
  3. Беляева А.И., Коленов И.В., Савченко А.А., Галуза А.А., Аксенов Д.А., Рааб Г.И., Фаизова С.Н., Войценя В.С., Коновалов В.Г., Рыжков И.В., Скорик О.А., Солодовченко С.И., Бардамид А.Ф. Влияние размера зерна на стойкость к ионному распылению зеркал из низколегированного медного сплава системы Cu–Cr–Zr // Вопр. атомной науки и техники. Сер. Термоядерный синтез. 2011. Вып. 4. С. 50–59.
  4. Зельдович В.И., Фролова Н.Ю., Хомская И.В., Хейфец А.Э. Электронно–микроскопическое исследование старения в сплаве Cu-0.06% Zr // ФММ. 2016. Т. 117. № 7. С. 732–741.
  5. Khomskaya I.V., Zel’dovich V.I., Frolova N.Y., Abdullina D.N., Kheifets A.E. Investigation of Cu5Zr particles precipitation in Cu-Zr and Cu-Cr-Zr alloys subjected to quenching and high strain rate deformation // Letters on Materials. 2019. V. 9. No. 4. P. 400–404.
  6. Бродова И.Г., Зельдович В.И., Хомская И.В. Фазово-структурные превращения и свойства цветных металлов и сплавов при экстремальных воздействиях // ФММ. 2020. Т. 121. № 7. С. 696–730.
  7. Абдуллина Д.Н., Хомская И.В., Разоренов С.В., Шорохов Е.В. Динамические свойства низколегированных сплавов меди с субмикрокристаллической структурой, полученной высокоскоростной деформацией // ФММ. 2023. Т. 124. № 12. С. 1279–1287.
  8. Dobatkin S.V., Shangina D.V., Bochvar N.R., Janecek M. Effect of deformation schedules and initial states on structure and properties of Cu-0.18% Zr alloy after high-pressure torsion and heating // Mater. Sci. Eng. A. 2014. V. 598. P. 288–292.
  9. Purcek G., Yanar H., Shangina D.V., Demirtas M., Bochvar N.R., Dobatkin S.V. Influence of high pressure torsion-induced grain refinement and subsequent aging on tribological properties of Cu–Cr–Zr alloy // J. Alloys and Compounds. 2018. V. 742. P. 325–333.
  10. Wongsa-Ngam J., Kawasaki M., Langdon T.G. The development of hardness homogeneity in a Cu-Zr alloy processed by equal-channel angular pressing // Mater. Sci. Eng. A. 2012. V. 556. P. 526–532.
  11. Zhilyaev A.P., Morozova A., Cabrera J.M., Kaibyshev R., Langdon T.G. Wear resistance and electroconductivity in a Cu-0.3Cr-0.5Zr alloy processed by ECAP // J. Mater. Sci. 2017. V. 52. P. 305–313.
  12. Зельдович В.И., Добаткин С.В., Фролова Н.Ю., Хомская И.В., Хейфец А.Э., Шорохов Е.В., Насонов П.А. Механические свойства и структура хромоциркониевой бронзы после динамического канально-углового прессования и последующего старения // ФММ. 2016. Т. 117. № 1. С. 74–82.
  13. Khomskaya I.V., Zel’dovich V.I., Frolova N. Yu., Kheifets A.E., Shorokhov E.V., Abdullina D.N. Effect of high-speed dynamic channel angular pressing and aging on the microstructure and properties of Cu–Cr–Zr alloys // IOP Conf. Ser.: Mater. Sci. Eng. 2018. V. 447. P. 012007 (6 pp.).
  14. Хейфец А.Э., Хомская И.В., Коршунов Л.Г., Зельдович В.И., Фролова Н.Ю. Влияние высокоскоростной деформации и температуры старения на эволюцию структуры, микротвердость и износостойкость низколегированного сплава Cu–Cr–Zr // ФММ. 2018. Т. 119. № 4. С. 423–432.
  15. Shangina D.V., Bochvar N.R., Dobatkin S.V. The effect of alloying with hafnium on the thermal stability of chromium bronze after severe plastic deformation // J. Mater. Sci. 2012. V. 47. P. 7764–7769.
  16. Shangina D.V., Gubicza J., Dodony E., Bochvar N.R., Straumal P.B., Tabachkova N. Yu., Dobatkin S.V. Improvement of strength and conductivity in Cu-alloys with the application of high pressure torsion and subsequent heat-treatments // J. Mater. Sci. 2014. V. 49. P. 6674–6681. https://doi.org/10.1007/s10853–014–8339–4
  17. Dobatkin S.V., Bochvar N.R., Shangina D.V. Ageing processes in ultrafine-grained low-alloyed bronzes subjected to equal channel angular pressing // Adv. Eng. Mater. 2015. V. 17. No. 12. P. 1862–1868.
  18. Shangina D., Maksimenkova Yu., Bochvar N., Serebryany V., Raab G., Vinogradov A., Skrotzki W., Dobatkin S. Influence of alloying with hafnium on the microstructure, texture and properties of Cu–Cr alloy after equal channel angular pressing // J. Mater. Sci. 2016. V. 51. P. 5493–5501.
  19. Попов В.В., Попова Е.Н., Столбовский А.В., Фалахутдинов Р.М., Мурзинова С.А., Шорохов Е.В., Гаан К.В. Влияние исходной обработки на структуру гафниевой бронзы при высокоскоростном прессовании // ФММ. 2020. Т. 121. № 5. С. 501–508.
  20. Фалахутдинов Р.М., Попов В.В., Попова Е.Н., Столбовский А.В., Шорохов Е.В., Гаан К.В. Влияние исходного состояния на эволюцию структуры гафниевой бронзы при старении // ФММ. 2022. Т. 123. № 9. С. 962–970.
  21. Диаграммы состояния двойных металлических систем: Справочник: В 3 т.: Т. 2. Под общей ред. Н.П. Лякишева. М.: Машиностроение, 1996. 1024 с.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Scanning electron micrographs (a, c) of the structure of chromium-hafnium bronze after hot forging (a) and quenching (c) and energy-dispersive X-ray spectra (b, d) taken from particles marked with a cross in the micrographs.

Download (83KB)
3. Fig. 2. External appearance of chromium-hafnium bronze samples after 1 (a) and 2 (b) passes of DCAP.

Download (15KB)
4. Fig. 3. Orientation DES maps of chromohafnium bronze (a–g) and distributions of crystallite misorientation angles (d, e) after 1 (a, b, e) and 2 (c, d, e) DCAP passes.

Download (141KB)
5. Fig. 4. Structure of chromohafnium bronze after 1 DCAP pass: a, c – bright fields; b, d – dark fields in reflections (200)Cu and (220)Cu, respectively, and electron diffraction patterns, zone axes [001] and [112].

Download (23KB)
6. Fig. 5. Structure of chromohafnium bronze after 2 DCAP passes: a, c – bright fields; b – dark field in the (111)Cu reflection and electron diffraction pattern, zone axis [110]; d – dark field in the (111)Cu and twin reflections.

Download (24KB)
7. Fig. 6. Effect of annealing temperature on the microhardness of hafnium (a) and chromium-hafnium (b) bronze subjected to DCAP.

Download (30KB)
8. Fig. 7. Microanalysis of chromium-hafnium bronze after 2 passes of DCAP and annealing at 400°C for 2 h: a, c – Cr particles and spectrum at the point marked by a circle; b, d – Cu5Hf particles and spectrum at the point marked by a circle.

Download (44KB)
9. Fig. 8. Structure of chromohafnium bronze after 2-pass DCAP and annealing at 400°C for 2 h: a, c – light fields, b – dark field in the (002)Cu reflection, zone axis [100], d – dark field in the (002)Cu and Cu5Hf reflections, indicated by a circle in the electron diffraction pattern.

Download (31KB)
10. Fig. 9. Structure of chromohafnium bronze after 2-pass DCAP and annealing at 400°C for 2 hours: a – bright field, b – dark field in the (002)Cu reflection.

Download (16KB)
11. Fig. 10. Structure of chromohafnium bronze after 2-pass DCAP and annealing at 500°C for 2 hours: a – bright field, b – dark field in reflections (111)Cu and (110)Cr, c, d – dark fields in the Cu5Hf reflection, indicated by a circle in the electron diffraction pattern.

Download (38KB)
12. Fig. 11. Structure of chromohafnium bronze after 2-pass DCAP and annealing at 600°C for 2 hours: a – bright field, b – dark field in reflections (002)Cu and Cu5Hf, c – dark field in reflections Cu5Hf, d – dark field in reflections (002)Cu and (110)Cr.

Download (26KB)