Formation the τ-phase during the deformation in a quenching biocompatible Ti–26 at % Nb alloy. effect on properties

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In situ X-ray diffraction studies of a hardened Ti–26 at % Nb alloy with an initial single-phase β structure sublected to tension allows studying the processes occurring upon application of deformation and correlating them to three intervals of strain values. The first range of values (up to 0.7%) is the region of elastic deformation of the bcc lattice of the β titanium solid solution. In the second interval (0.7–1.4%), the occurrence of the strain-induced β → τ transformation is recorded, and, as the strain increases to 1.4%, an increase in the c/a parameter of this lattice is observed. In the third strain range (1.4–2.2%), plastic deformation of the β and τ phases occurs. The resulting τ phase after the test remains quite stable. It is found that after tensile tests, the Young modulus of the hardened Ti–6Nb alloy decreases from 58 to 52–54 GPa, and the microhardness increases from 200 to 240 HV.

Full Text

Restricted Access

About the authors

A. A. Korenev

Ural Federal University named after the First President of Russia B. N. Yeltsin

Email: a.g.illarionov@urfu.ru
Russian Federation, Ekaterinburg, 620002

S. L. Demakov

Ural Federal University named after the First President of Russia B. N. Yeltsin

Email: a.g.illarionov@urfu.ru
Russian Federation, Ekaterinburg, 620002

M. S. Karabanalov

Ural Federal University named after the First President of Russia B. N. Yeltsin

Email: a.g.illarionov@urfu.ru
Russian Federation, Ekaterinburg, 620002

A. G. Illarionov

Ural Federal University named after the First President of Russia B. N. Yeltsin; Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Author for correspondence.
Email: a.g.illarionov@urfu.ru
Russian Federation, Ekaterinburg, 620002; Ekaterinburg, 620108

References

  1. Miyazaki S., Kim H.Y., Hosoda H. Development and characterization of Ni-free Ti-base shape memory and superelastic alloys // Mater. Sci. Eng. A. 2006. V. 438–440. P. 18–24.
  2. Sidhu S.S., Singh H., Abdel-Hady M. A review on alloy design, biological response, and strengthening of β-titanium alloys as biomaterials // Mater. Sci. Eng. C. 2021. V. 121. P. 111661.
  3. Demakov S., Kylosova I., Stepanov S., Bönisch M. A general model for the crystal structure of orthorhombic martensite in Ti alloys // Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials. 2021. Т. 77. № 2. С. 749–762.
  4. Ильин А.А. Механизм и кинетика фазовых и структурных превращений в титановых сплавах. М.: Наука, 1994. 304 с.
  5. Weng W., Biesiekierski A., Li Y., Wen C. Effects of selected metallic and interstitial elements on the microstructure and mechanical properties of beta titanium alloys for orthopedic applications // Materialia. 2019. V. 6. P. 100323.
  6. Kim H.Y., Fu J., Tobe H., Kim J.I., Miyazaki S. Crystal structure, transformation strain, and superelastic property of Ti–Nb–Zr and Ti–Nb–Ta alloys // Shap. Mem. Superelasticity. 2015. V. 1. P. 107–116.
  7. Kim H.Y., Kim J.I., Inamura T., Hosoda H., Myazaki S. Effect of thermo-mechanical treatment on mechanical properties and shape memory behavior of Ti–(26–28) at.% Nb alloys // Mater. Sci. Eng. A. 2006. V. 438–440. P. 839–843.
  8. Кадыкова Г.Н., Гадзоева М.М., Обходова Т.В. Влияние холодной деформации на фазовые превращения в титан-ниобиевых сплавах // Металлы. 1974. № 3. С. 165–172.
  9. Лясоцкий И.В., Кадыкова Г.Н., Тяпкин Ю.Д. Структура твердых растворов сплавов на основе титана с ОЦК решеткой и образование тетрагональной фазы при холодной деформации // ФММ. 1978. Т. 46. № 1. С. 142–150.
  10. Кадыкова Г.Н., Гадзоева М.М. Влияние циркония на фазовые превращения в сплавах Ti–Nb // Металлы. 1975. № 2. С. 198–204.
  11. Илларионов А.Г., Нарыгина И.В., Карабаналов М.С., Демаков С.Л., Попов А.А., Елкина О.А. Структурные и фазовые превращения в титановом сплаве переходного класса при деформационном воздействии // ФММ. 2010. Т. 110. № 3. С. 295–304.
  12. Львова Е.А., Черемных В.Г. Стадийность мартенситного превращения, индуцированного пластической деформацией, в титановых сплавах // ФММ. 1987. Т. 63. № 3. С. 525–533.
  13. Мальцев В.М. Влияние вида деформации на распад метастабильной β-фазы в сплаве Вт16 // ФММ. 1976. Т. 41. № 6. С. 1225–1231.
  14. Tahara M., Kim H.Y., Hosoda H., Miyazaki S. Cyclic deformation behavior of a Ti-26 at.% Nb alloy // Acta Mater. 2009. V. 57. P. 2461–2469.
  15. Tahara M., Kim H.Y., Inamura T., Hosoda H., Miyazaki S. Lattice modulation and superelasticity in oxygen-added β-Ti alloys // Acta Mater. 2011. V. 59. P. 6208–6218.
  16. Castany P., Ramarolahy A., Prima F., Laheurte P., Curfs C., Gloriant T. In situ synchrotron X-ray diffraction study of the martensitic transformation in superelastic Ti-24Nb-0.5N and Ti-24Nb-0.5O alloys // Acta Mater. 2015. V. 88. P. 102–111.
  17. Sheremetyev V., Dubinskiy S., Kudryashova A., Prokoshkin S., Brailovski V. In situ XRD study of stress- and cooling-induced martensitic transformations in ultrafine- and nano-grained superelastic Ti-18Zr-14Nb alloy // J. Alloys Compounds. 2022. V. 902. P. 163704.
  18. Niinomy M., Akahori T., Nakai M. In situ X-ray analysis of mechanism of nonlinear super elastic behavior of Ti–Nb–Ta–Zr system beta-type titanium alloy for biomedical applications // Mater. Sci. Eng. C. 2008. V. 28. P. 406–413.
  19. Панова Т.В., Блинов В.И. Определение индексов отражающихся плоскостей: Описание лабораторной работы по курсу “Рентгеноструктурный анализ”. Омск: Омск. гос. ун-т, 2004. 20 с.
  20. Коренев А.А., Илларионов А.Г. Расчетные и экспериментальные упругие свойства закаленных биосовместимых сплавов титана систем Ti–Nb, Ti–Nb–Zr, Ti–Nb–Zr–Sn, Ti–Nb–Zr–Sn–Ta // ФММ. 2022. Т. 123. № 11. С. 1–7.
  21. Коренев А.А., Илларионов А.Г. Влияние холодной деформации на структуру, текстуру, упругие и микродюрометрические свойства биосовместимых бета-титановых сплавов на базе системы Ti–Nb–Zr // ФММ. 2023. Т. 124. № 6. С. 492–499.
  22. Shinohara Y., Matsumoto Y., Tahara M., Hosoda H., Inamura T. Development of 〈001〉-fiber texture in cold-groove-rolled Ti–Mo–Al–Zr biomedical alloy // Materialia. 2018. V. 1. P. 52–61.
  23. Jiang B., Wang Q., Wen D., Xu W., Chen G. Dong C., Sun L., Liaw P.K. Effects of Nb and Zr on structural stabilities of Ti–Mo–Sn-based alloys with low modulus // Mater. Sci. Eng. A. 2017. V. 687. P. 1–7.
  24. Гречников Ф.В. Теория пластического деформирования металлов: Учебник / Ф.В. Гренчников, В.Г. Каргин. Самара: Издательство Самарского университета, 2021. 448 с.
  25. Jiang B., Wang Q., Li X., Dong C., Xu F., He H., Sun L. Structural stability of the metastable β-[(Mo0.5Sn0.5)-(Ti13Zr1)]Nb1 alloy with low Young’s modulus at different states // Metal. Mater. Trans. A. 2017. V. 48A. P. 3912–3919.
  26. Yang Y., Zhang B., Meng Z., Qu L., Wang H., Cao S., Hu J., Chen H. Wu S., Ping D., Li G., Zhang L.-C., Yang R., Huang A. {332} < 113 > Twinning transfer behavior and its effect on the twin shape in a beta-type Ti-23.1Nb-2.0Zr-1.0O alloy // J. Mater. Sci. Techn. 2021. V. 91. P. 58–66.
  27. Hou F.Q., Li S.J., Hao Y.L., Yang R. Nonlinear elastic deformation behavior of Ti-30Nb-12Zr alloys // Scripta Mater. 2010. V. 63. P. 54–57.
  28. Золоторевский В.С. Механические свойства металлов. Учебник для вузов 3-е изд., перераб. и доп. М.: МИСИС, 1998. 400 с.
  29. Муслов С.А. Упругие свойства металлов и сплавов накануне мартенситных превращений // Международный научно-исследовательский журнал. 2019. Т. 80. № 2. С. 13–19.
  30. Oliver W.C., Pharr G.M. Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology Pharr // J. Mater. Res. 2004. V. 19. № 1. P. 3–20.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. View of the installation (a); diagram of the X-ray imaging under tension (b).

Download (22KB)
3. Fig. 2. Diffraction pattern (a) and orientation microscopy (b) of the quenched Ti–26Nb alloy.

Download (29KB)
4. Fig. 3. Experimentally constructed stress-strain diagram for tensile testing of quenched Ti–26Nb alloy (a) and fragments of diffraction patterns of quenched Ti–26Nb alloy, recorded during tensile deformation at certain loading stages ( is the position of the maximum peak of the β-phase lines; ▼ are the τ-phase lines) (b). The recording was carried out from the plane of the cut.

Download (61KB)
5. Fig. 4. Lattice periods of the β- and τ-phases (a); parameter c/a of the β- and τ-phases (b) of the Ti–26Nb alloy during tensile testing (the dotted line in “b” shows the transition to values ​​after unloading).

Download (29KB)
6. Fig. 5. Fragment of the Bjerstrom nomogram for the tetragonal syngony with the experimental values ​​of c/a plotted on the position of lines with indices of the 200, 211 type of the bct lattice of the τ-phase formed after stretching the quenched Ti–26Nb alloy in the deformation range from 1 to 2.2%.

Download (15KB)
7. Fig. 6. Fragment of diffraction patterns (a) and the ratio of the intensities of the lines of the 200 τ- and 200 β-phases of the Ti–26Nb alloy (b) after the first tensile test.

Download (29KB)
8. Fig. 7. Alloy structure (a) and orientation microscopy (b) of Ti–26Nb alloy after tensile testing and subsequent aging for 3 days.

Download (28KB)
9. Fig. 8. Contour of the graph of the calculated modulus of elasticity (a) and Poisson's ratio (b) of the bcc lattice of the β-solid solution of the Ti–26Nb alloy depending on the orientation.

Download (24KB)