Structure features and mechanical properties of metastable Cu–39.5 wt % Zn (α+β) alloy with shape memory effect subjected to thermomechanical treatment

Cover Page

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A comprehensive study of structural-phase transformations and physical and mechanical properties of metastable Cu–39.5 wt % Zn α + β alloy with shape memory effect subjected to thermomechanical treatments including cold rolling and annealing has been carried out. The features of the fine structure formed at the intermediate and bainitic phase transformations have been studied using optical and electron microscopy as well as X-ray phase analysis. The temperature intervals of bainitic 3R/9R and other phase transformations were established by differential scanning calorimetry during heating up to 500°C. In the case of the hardened alloy, the temperature of the bainitic transformation was close to 170°C. In mechanical tests conducted using uniaxial tension, it has been demonstrated that cold deformation and post-deformation heat treatment under different modes can be employed to obtain the alloy in high-strength or ductile states. These states are characterized by an ultimate strength (σu) greater than 700 MPa and a relative elongation (δ) greater than 40%, respectively.

About the authors

A. E. Svirid

Mikheev Institute of Metal Physics, Ural Branch of the RAS

Author for correspondence.
Email: svirid@imp.uran.ru
Russian Federation, Ekaterinburg

V. G. Pushin

Mikheev Institute of Metal Physics, Ural Branch of the RAS

Email: svirid@imp.uran.ru
Russian Federation, Ekaterinburg

N. N. Kuranova

Mikheev Institute of Metal Physics, Ural Branch of the RAS

Email: svirid@imp.uran.ru
Russian Federation, Ekaterinburg

S. V. Afanasyev

Mikheev Institute of Metal Physics, Ural Branch of the RAS

Email: svirid@imp.uran.ru
Russian Federation, Ekaterinburg

D. I. Davydov

Mikheev Institute of Metal Physics, Ural Branch of the RAS

Email: svirid@imp.uran.ru
Russian Federation, Ekaterinburg

L. A. Stashkova

Mikheev Institute of Metal Physics, Ural Branch of the RAS

Email: svirid@imp.uran.ru
Russian Federation, Ekaterinburg

References

  1. Perkins J. (Ed.) Shape Memory Effects in Alloys. Plenum. London: UK, 1975. 583 p.
  2. Варлимонт Х., Дилей Л. Мартенситные превращения в сплавах на основе меди, серебра и золота. Москва: Наука, 1980. 205 с.
  3. Ооцука К., Симидзу К., Судзуки Ю., Сэкигути Ю., Тадаки Ц., Хомма Т., Миядзаки С. Сплавы с эффектом памяти формы. М.: Металлургия, 1990. 224 с.
  4. Duering T.W., Melton K.L., Stockel D., Wayman C.M. (Eds.) Engineering Aspects of Shape Memory Alloys. Butterworth-Heineman: London, UK, 1990.
  5. Хачин В.Н., Пушин В.Г., Кондратьев В.В. Никелид титана: Структура и свойства. Москва: Наука, 1992. 160 с.
  6. Пушин В.Г., Кондратьев В.В., Хачин В.Н. Предпереходные явления и мартенситные превращения. Екатеринбург: УрО РАН, 1998. 368 с.
  7. Материалы с эффектом памяти формы: Справ изд. / Под ред. В.А. Лихачева. Т. 1–4. СПб.: Изд-во НИИХ СПбГУ, 1997, 1998.
  8. Cui J., Wu Y., Muehlbauer J., Hwang Y., Radermacher R., Fackler S., Wuttig M., Takeuchi I. Demonstration of high efficiency elastocaloric cooling with large δT using NiTi wires // Appl. Phys. Lett. 2012. V. 101. P. 073904.
  9. Pushin V., Kuranova N., Marchenkova E., Pushin A. Design and Development of Ti–Ni, Ni–Mn–Ga and Cu–Al–Ni-based Alloys with High and Low Temperature Shape Memory Effects // Materials. 2019. V. 12. P. 2616–2640.
  10. Hornbogen E. The effect of variables on martensitic transformation temperatures // Acta Met. 1985. V. 33. № 4. P. 595–601.
  11. Sedlak P., Seiner H., Landa M., Novák V., Šittner P., Manosa L.I. Elastic Constants of bcc Austenite and 2H Orthorhombic Martensite in CuAlNi Shape Memory Alloy // Acta Mater. 2005. V. 53. P. 3643–3661.
  12. Свирид А.Э., Лукьянов А.В., Пушин В.Г., Белослудцева Е.С., Куранова Н.Н., Пушин А.В. Влияние температуры изотермической осадки на структуру и свойства сплава Cu–14 мас. % Al–4 мас. % Ni с эффектом памяти формы // ФММ. 2019. Т. 120. С. 1257–1263.
  13. Pushin V.G., Kuranova N.N., Svirid A.E., Uksusnikov A.N., Ustyugov Y.M. Design and Development of High-Strength and Ductile Ternary and Multicomponent Eutectoid Cu-Based Shape Memory Alloys: Problems and Perspectives // Metals. 2022. V. 12. P. 1289 (32 pages).
  14. Dasgupta R. A look into Cu-based shape memory alloys: Present scenario and future prospects // J. Mater. Res. 2014. V. 29. N 16. P. 1681–1698.
  15. Свирид А.Э., Пушин В.Г., Макаров В.В., Куранова Н.Н. Влияние высокотемпературной термомеханической обработки на микроструктуру и механические свойства сплава Cu–Al–Ni–(B) с термоупругим мартенситным превращением // ФММ. 2023. Т. 124. С. 635–643.
  16. Lohan N.M., Pricop B., Burlacu L., Bujoreanu L.-G. Using DSC for the detection of diffusion-controlled phenomena in Cu-based shape memory alloys // J. Therm Anal Calorium. 2018. V. 131. P. 215–224.
  17. Hull D. Spontaneous Transformation of Metastable β-brass in Thin Foils // Philosophical Magazine. 1961. V. 7. P. 537–550.
  18. Kajiwara S. Strain-induced martensite structures of a Cu-Zn alloy // J. Phys. Soc. Japan. 1971. V. 30. P. 1757.
  19. Золоторевский В.С. Механические свойства металлов. Москва: Металлургия, 1983. 352 с.

Supplementary files

Supplementary Files
Action
1. JATS XML