Crystallographic features of shear transformation in martensitic and martensitic–ferritic stainless steels

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The microstructure of stainless steels belonging to the martensitic and martensitic–ferritic classes was examined by orientation microscopy (EBSD) following quenching. The steels comprised 15 wt % Cr, Ni, and Nb, and were distinguished by the addition of Cu or Mo as alloying elements. Using the deviation spectra of interfacial α/γ-boundaries from orientation relationships (OR), as well as the initial austenitic grain recovery procedure according to OR, it was found that the martensitic transformation occurring in both steels is realized according to the closest to Kurdyumov–Sachs OR, or (112)γ||(113)α; [111]γ||[110]α OR. It is demonstrated that the δ-ferrite grains present in the martensitic−ferritic grade steel before and following quenching are in the same OR with austenite. This appears to be a consequence of the nucleation of martensitic crystals at the δ-ferrite/austenite phase interface. It is demonstrated also that the application of orientation microscopy enables the estimation of the grain austenitic structure of stainless steels at elevated temperatures with an acceptable degree of precision. This is achieved by analyzing the structure resulting from shear transformation.

About the authors

M. L. Lobanov

Ural Federal University named after the First President of Russia B.N. Yeltsin

Author for correspondence.
Email: m.l.lobanov@urfu.ru
Russian Federation, Ekaterinburg, 620002

A. A. Gusev

OOO TMK Research Center

Email: m.l.lobanov@urfu.ru
Russian Federation, Moscow, 121205

L. A. Lobanova

Ural Federal University named after the First President of Russia B.N. Yeltsin; OOO TMK Research Center

Email: m.l.lobanov@urfu.ru
Russian Federation, Ekaterinburg, 620002; Ekaterinburg, 620026

V. Y. Yarkov

Ural Federal University named after the First President of Russia B.N. Yeltsin; JSC Institute of Reactor Materials

Email: m.l.lobanov@urfu.ru
Russian Federation, Ekaterinburg, 620002; Zarechny, 624250

References

  1. Kimura M., Tamari T., Shimamoto K. High Cr Stainless Steel OCTG with High Strength and Superior Corrosion Resistance // JFE GIHO. 2005. № 9. P. 7–12.
  2. Odnobokova M.V., Kipelova A.Yu., Belyakov A.N., Kaibyshev R.O. Mechanical behavior and brittle-viscous transition in highchromium martensitic steel // Phys. Met. Metal. 2016. V. 117 (4). P. 390–398.
  3. Hu X., Song Y., Yan D., Rong L. Aging characteristics and properties of Fe–16Cr–2.5Mo–1.0Cu damping alloy // Mater. Sci. Eng. 2018. A. 734. P. 184–191.
  4. Akhmed’yanov A.M., Rushchits S.V., Smirnov M.A. Hot deformation of martensitic and supermartensitic stainless steels // International Conference on Industrial Engineering-2016, Materials Science Forum 870 (Trans Tech Publications, Switzerland). 2016. P. 259–264.
  5. Nakada N., Ito H., Matsuoka Y., Tsuchiyama T., Takaki S. Deformation-induced martensitic transformation behavior in cold-rolled and cold-drawn type 316 stainless steels // Acta Mater. 2010. V. 58. № 3. P. 895–903.
  6. Cho L., Seo E.J., Bruno C., De Cooman B.C. Near Ac3 austenitized ultra-fine-grained quenching and partitioning (Q&P) steel // Scripta Mater. 2016. V. 123. P. 69–72.
  7. Kurdjumow G., Sachs G. Über den Mechanismus der Stahlhärtung // Zeitschrift für Phys. 1930. V. 64. P. 325–343.
  8. Nishiyama Z. X-ray Investigation of the Mechanism of the Transformation from Face-Centered Cubic Lattice to Body-Centered Cubic // Sci. Rep. Tohoku Univ. 1934. V. 23. P. 637–664.
  9. Wassermann G. Über Den Mechanismus Der α-γ-Umwandlung Des Eisens. Verlag Stahleisen, Düsseldorf. 1935. 7.
  10. Greninger A.B., Troiano A.R. Kinetics of the Austenite → Martensite Transformation in Steel // Metall. Trans. 1940. V. 28. P. 537–562.
  11. Kraposhin V., Jakovleva I., Karkina L., Nuzhny G., Zubkova T., Talis A. Microtwinning as a common mechanism for the martensitic and pearlitic transformations // J. Alloys Compounds. 2013. V. 577S. P. 30–36.
  12. Гундырев В.М., Зельдович В.И., Счастливцев В.М. Ориентационные соотношения и механизм мартенситного превращения в среднеуглеродистой стали с пакетным мартенситом // Изв. РАН. Сер. физическая. 2017. Т. 81. № 11. С. 1435–1441.
  13. Гундырев В.М., Зельдович В.И. Кристаллографический анализ мартенситного ГЦК → ОЦТ-превращения в высокоуглеродистой стали // ФММ. 2014. Т. 115. № 10. С. 1035.
  14. Гундырев В.М., Зельдович В.И. Релаксационный поворот при мартенситном превращении в сплавах с термоупругим и нетермоупругим мартенситом // ФММ. 2023. Т. 124. № 4. С. 409–414.
  15. Лобанов М.Л., Пастухов В.И., Редикульцев А.А. Влияние специальных границ на γ→α-превращение в аустенитной нержавеющей стали // ФММ. 2021. Т. 122. № 4. С. 424–430.
  16. Эфрон Л.И. Металловедение в «большой» металлургии. Трубные стали. Москва: Металлургиздат, 2012. 696 с.
  17. Maitland T., Sitzman S. Electron Backscatter Diffraction (EBSD) Technique and Materials Characterization Examples / Scanning Microscopy for Nanotechnology. Zhou W., Wang Z.L. (Eds.). 2007. 522 p.
  18. Nolze G., Winkelmann A., Cios G., Tokarski T. Tetragonality mapping of martensite in a high-carbon steel by EBSD // Materials Characterization. 2021. V. 175. P. 1044–5803. 111040.
  19. Adachi Y., Ojima M., Morooka S., Tomota Y. Hierarchical 3D/4D characterization on deformation behavior of austenitic and pearlitic steels // Materials Science Forum. 2010. P. 638–642.
  20. Meishuai L., Yudong Z., Wang X., Beausir B., Zhao X., Zuo L., Esling C. Crystal defect associated selection of phase transformation orientation relationships (ORs) // Acta Mater. 2018. V. 152. P. 315–326.
  21. Алексеев В.И., Юсупов В.С., Лазаренко Г.Ю. Механизм влияния молибдена и меди на антикоррозионные свойства стали // Перспективные материалы. 2009. № 6. С. 21–29.
  22. Алексеев В.И., Юсупов В.С., Лазаренко Г.Ю. Роль меди как легирующего элемента в стали для повышения ее антикоррозионных свойств в атмосферных условиях // Перспективные материалы. 2010. № 4. С. 95–101.
  23. Chenna Krishna S., Pant B., Jha A., George K.M., Gangwar N.K. Microstructure and properties of 15Cr–5Ni–1Mo–1W martensitic stainless steel // Steel Research International. 2015. V. 86. № 1. P. 51–58.
  24. Kumar A.V., Gupta R.K., Narahari Р., Amruth M., Ramkumar P., Narahari P. Development and characterization of 15Cr–5Ni–1W martensitic precipitation hardening stainless steel for aerospace applications // Mater. Sci. Forum. 2015. V. 830–831. P. 15–18.
  25. Потак Я.М. Высокопрочные стали. Москва: Металлургия, 1972. 208 с.
  26. Mariani F.E., Takeya G.S., Casteletti L.C., Lombardi A.N., Totten G.E. Heat treatment of precipitation-hardening stainless steels alloyed with niobium // Mater. Perfor. Characteriz. 2016. V. 5. № 1. P. 38–46.
  27. Wang Z., Li H., Shen Q., Liu W., Zhanyong W. Nano-precipitates evolution and their effects on mechanical properties of 17-4 precipitation-hardening stainless steel // Acta Mater. 2018. V. 156. P. 158–171.
  28. Пумпянский Д.А., Пышминцев И.Ю., Битюков С.М., Алиева Е.С., Гусев А.А., Михайлов С.Б., Лобанов М.Л. Особенности фазовых превращений в сталях мартенситного класса для высокопрочных коррозионностойких труб нефтяного сортамента // Металлург. 2021. № 11. С. 35–42.
  29. Лобанов М.Л., Русаков Г.М., Редикульцев А.А., Беликов С.В., Карабаналов М.С., Струина Е.Р., Гервасьев А.М. Исследование специальных разориентаций в реечном мартенсите низкоуглеродистой стали методом ориентационной микроскопии // ФММ. 2016. Т. 117. № 3. С. 266–271.
  30. Сухомлин Г.Д. Большеугловые низкоэнергетические границы в мартенситных структурах доэвтектоидных сталей // Металлофиз. новейшие технол. 2013. Т. 35. № 8. С. 1109–1122.
  31. Lobanov M.L., Zorina M.A., Karabanalov M.S., Urtsev N.V., Redikultsev A.A. Phase Transformation Crystallography in Pipeline HSLA Steel after TMCP // Metals. 2023. V. 13 (6). 1121.
  32. Ram F., Zaefferer S., Jäpel T., Raabe D. Error Analysis of the Crystal Orientations and Disorientations Obtained by the Classical Electron Backscatter Diffraction Technique // J. Appl. Crystal. 2015. V. 48. P. 797–813.

Supplementary files

Supplementary Files
Action
1. JATS XML