Influence of deformation and annealing on the structure, electrical resistance and hardness of the Al–4 %Cu–3 %Mn alloy casted in an electromagnetic crystallizer

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Using computational and experimental methods, the influence of deformation-heat treatment on the structure, electrical resistance and hardness of the Al–4 %Cu–3 %Mn alloy produced by casting in an electromagnetic crystallizer was studied. It has been shown that at a cooling rate of more than 1000 K/s, the entire amount of manganese and half of the total copper content are dissolved in the aluminum solid solution, which allows, with subsequent deformation-thermal treatment, to form a structure with the maximum possible number of Al20Cu2Mn3 dispersoids, which allows achieving significant increasing heat resistance compared to known alloys of the Al–Cu–Mn system.

Толық мәтін

Рұқсат жабық

Авторлар туралы

N. Belov

National Research Technological University MISiS

Email: ch3rkasov@gmail.com

кафедра обработки металлов давлением

Ресей, Moscow, 119047

S. Cherkasov

National Research Technological University MISiS

Хат алмасуға жауапты Автор.
Email: ch3rkasov@gmail.com

кафедра обработки металлов давлением

Ресей, Moscow, 119047

N. Korotkova

National Research Technological University MISiS

Email: ch3rkasov@gmail.com

кафедра обработки металлов давлением

Ресей, Moscow, 119047

M. Motkov

Siberian Federal University

Email: ch3rkasov@gmail.com

кафедра электротехники

Ресей, Krasnoyarsk, 660041

Әдебиет тізімі

  1. Valiev R.Z., Murashkin M.Yu., Sabirov I. A nanostructural design to produce high-strength Al alloys with enhanced electrical conductivity // Scripta Mater. 2014. V. 76. P. 13–16.
  2. Pakiela Z., Ludwichowska K., Ferenc J., Kulczyk M. Mechanical properties, and electrical conductivity of Al 6101 and 6201 alloys processed by hydro-extrusion // IOP Conf. Ser.: Mater. Sci. Eng. 2014. V. 63(1). P. 012120.
  3. Belov N.A., Alabin A.N., Matveeva I.A., Eskin D.G. Effect of Zr additions and annealing temperature on electrical conductivity and hardness of hot rolled Al sheets // Trans. Nonferrous Met. Soc. China. 2015. V. 25. P. 2817–2826.
  4. Orlova T.S., Latynina T.A., Mavlyutov A.M., Murashkin M.Y., Valiev R.Z. Effect of annealing on microstructure, strength, and electrical conductivity of the pre-aged and HPT-processed Al–0.4 Zr alloy // J. Alloys Compd. 2019. V. 774. P. 41–48.
  5. Murashkin M.Yu., Sabirov I., Medvedev A.E., Enikeev N.A., Lefebvre W., Valiev R.Z., Sauvage X. Mechanical and electrical properties of an ultrafine grained Al–8.5 wt.% RE (RE=5.4wt.% Ce, 3.1wt.% La) alloy processed by severe plastic deformation // Mater. Des. 2016. V. 90. P. 433–442.
  6. Murashkin M.Yu., Sabirov I., Sauvage X., Valiev R.Z. Nanostructured Al and Cu alloys with superior strength and electrical conductivity // J. Mater. Sci. 2016. V. 51. P. 33–49.
  7. Liu L., Jiang J.T., Zhang B., Shao W.Z., Zhen L. Enhancement of strength and electrical conductivity for a dilute Al–Sc–Zr alloy via heat treatments and cold drawing // J. Mater. Sci. Technol. 2019. V. 35. P. 962–971.
  8. Patent EP 2929061 B1, N.A. Belov, A.N. Alabin, Heat resistant aluminum base alloy and wrought semifinished product fabrication method. Publ. 22.02.2017. Bul. 2017/08.
  9. Belov N., Korotkova N., Akopyan T., and Tsydenov K. Simultaneous increase of electrical conductivity and hardness of Al–1.5 wt% Mn alloy by addition of 1.5 wt.% Cu and 0.5 wt.%Zr // Metals. 2019. V. 9. P. 1246.
  10. Белов Н.А., Короткова Н.О., Черкасов С.О., Аксенов А.А. Сравнительный анализ электрической проводимости и твердости холоднокатаных листов сплавов Al–1.5 % Mn и Al–1.5 % Mn–1.5 % Cu (мас.%) // Цветные металлы. 2020. № 4. C. 52–58.
  11. Belov N.A., Cherkasov S.O., Korotkova N.O., Yakovleva A.O., Tsydenov K.O. Effect of Iron and Silicon on the Phase Composition and Microstructure of the Al–2 % Cu–2 % Mn (wt %) Cold Rolled Alloy // Phys. Met. Metal. 2021. V. 122. P. 1095–1102.
  12. Belov N.A., Korotkova N.O., Shurkin P.K., Aksenov A.A. Substantiation of the Copper Concentration in Thermally Stable Wrought Aluminum Alloys Containing 2 wt% of Mn // Phys. Metals Metallogr. 2020. V. 121. Р. 1211–1219. https://doi.org/10.1134/S0031918X20120030
  13. Hatch J.E. Aluminum: Properties and Physical Metallurgy. Ohio: American Society for Metals, 1984. 424 p.
  14. Polmear I., StJohn D., Nie J.F., Qian M. Physical metallurgy of aluminium alloys / In: Light Alloys, 5th ed.; Elseiver, London. 2017. P. 31–107.
  15. Belov N.A., Akopyan T.K., Shurkin P.K., Korotkova N.O. Comparative Analysis of Structure Evolution and Thermal Stability of Experimental AA2219 and Model Al–2wt.%Mn–2wt.%Cu Cold Rolled Alloys // JALCOM. 2021. V. 864. Р. 158823.
  16. Добаткин В.И., Елагин В.И., Федоров В.М. Быстрозакристаллизованные алюминиевые сплавы. М.: ВИЛС, 1995. 341 с.
  17. Добаткин В.И., Федоров В.М., Бондарев Б.И., Елагин В.И. Гранулируемые алюминиевые сплавы с высоким содержанием переходных металлов // Технология легких сплавов. 2004. № 3. C. 22–29.
  18. Konkevich V.Yu. Granulated aluminum alloys for aircraft application welded structure // Welding in the World. 1994. V. 33. P. 430–432.
  19. Lavernia E.J., Srivatsan T.S. The rapid solidification processing of materials: science, principles, technology, advances, and applications // J. Mater. Sci. 2010. V. 45. P. 287–325.
  20. Авдулов А.А., Усынина Г.П., Сергеев Н.В., Гудков И.С. Отличительные особенности структуры и свойств Отличительные особенности структуры и свойств длинномерных слитков малого сечения из алюминиевых сплавов, отлитых в электромагнитный кристаллизатор // Цветные металлы. 2017. № 7. С. 73–77.
  21. Pervukhin M.V., Timofeev V.N., Usynina G.P., Sergeev N.V., Motkov M.M., Gudkov I.S. Mathematical modeling of MHD processes in the casting of aluminum alloys in electromagnetic mold // IOP Conf. Ser.: Mater. Sci. Eng. 2019. V. 643. P. 012063.
  22. Sidelnikov S., Voroshilov D., Motkov M., Timofeev V., Konstantinov I., Dovzhenko N., Lopatina E.S., Bespalov V.M., Sokolov R.E., Voroshilova M.V. Investigation structure and properties of wire from the alloy of AL-REM system obtained with the application of casting in the electromagnetic mold, combined rolling-extruding, and drawing // Intern. J. Adv. Manufactur. Techn. 2021. V. 114. Р. 2633–2649.
  23. Патент РФ № 2745520, опубл. 25.03.2021, бюл. № 9 (“Способ непрерывного литья слитка и установка для его осуществления”).
  24. Belov N.A., Akopyan T.K., Korotkova N.O., Shurkin P.K., Timofeev V.N., Raznitsyn O.A., Sviridova T.A. Structure and Heat Resistance of High Strength Al–3.3 %Cu–2.5 %Mn–0.5 %Zr (wt.%) Conductive Wire Alloy Manufactured by Electromagnetic Casting // J. Alloys Compounds. 2022. V. 891(161948).
  25. Information on www.thermocalc.com. Accessed 5 May 2023.
  26. ГОСТ 4784–2019. Алюминий и сплавы алюминиевые деформируемые. Марки. М.: Стандартинформ, 2019–09–01.
  27. Bäckerud L., Chai G., Tamminen J. Solidification Characteristics of Aluminum Alloys. Volume 1: Foundry Alloys, first ed., Skanaluminium, Oslo. 1986.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Initial bar blanks (a) and cold-rolled alloy strips (b).

Жүктеу (5KB)
3. Fig. 2. Calculated isothermal sections of the Al–Cu–Mn system at 350 °C (a) and 425 °C (b) and curves of nonequilibrium crystallization according to the Sheil-Gulliver model (dependence of the total fraction of solid phases Q on temperature) (c – all phases are included in the calculation, d – Mn-containing phases are excluded).

Жүктеу (32KB)
4. Fig. 3. The structure of the cast billet (a, b) and cold-rolled tape (c, d) obtained from the cast EMC billet according to the 425S mode (see Table 2).

Жүктеу (20KB)
5. Fig. 4. The structure of the cast billet (a, d), cold–rolled strips 350S (b, e) and 425S (c, e) after annealing at 450 °C (a–c) and 550 °C (d-e).

Жүктеу (70KB)
6. Fig. 5. The effect of the annealing temperature on the electrical resistivity (a) and hardness (b) of the cast workpiece and cold-rolled strips.

Жүктеу (20KB)
7. Fig. 6. Comparison of the calculated and experimental dependences of the electrical resistivity of cold-rolled strips on the annealing temperature.

Жүктеу (10KB)
8. Fig. 7. The effect of the annealing duration at 350 °C on the electrical resistivity (a) and hardness (b) of the cold-rolled strip.

Жүктеу (15KB)