INFLUENCE OF THE GAUGE FIELD ON TRANSPORT PHENOMENA IN CONDUCTIVE INHOMOGENEOUS MAGNETIC STRUCTURES
- Autores: Lyapilin I.I.1,2
-
Afiliações:
- Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences
- Ural Federal University
- Edição: Volume 124, Nº 8 (2023)
- Páginas: 726-731
- Seção: ЭЛЕКТРИЧЕСКИЕ И МАГНИТНЫЕ СВОЙСТВА
- URL: https://innoscience.ru/0015-3230/article/view/662989
- DOI: https://doi.org/10.31857/S0015323023600995
- EDN: https://elibrary.ru/SXDJAO
- ID: 662989
Citar
Resumo
The influence of the gauge ("accompanying"), spin-dependent electric field and force induced magnetization dynamics of conducting inhomogeneous magnetic structures, on transport phenomena. It is shown that the transport phenomena, associated with the manifestation of a spin-dependent electric field, lead to the effect of spin Coulomb drag of carriers charge.
Palavras-chave
Sobre autores
I. Lyapilin
Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences; Ural Federal University
Autor responsável pela correspondência
Email: lyapilin@imp.uran.ru
Ekaterinburg, 620108 Russia; Ekaterinburg, 620002 Russia
Bibliografia
- Tserkovnyak Y., Brataas A., Bauer G.E.W. Enhanced Gilbert Damping in Thin Ferromagnetic Films // Phys. Rev. Lett. 2002. V. 88. P. 117601-1–17601-4.
- Berger L. Possible existence of a Josephson effect in ferromagnets // Phys. Rev. B. 1986. V. 33. P. 1572–1578.
- Barnes S.E., Maekawa S. Generalization of Faraday’s law to include nonconservative spin forces // Phys. Rev. Lett. 2007. V. 98. P. 246601-1–24601-4.
- Volovik G.E. Linear momentum in ferromagnets // J. Phys. C 1987. V. 20. P. L83–L87.
- Yamane Y., Ieda J., Ohe J. et al. Equation-of-motion approach of spin-motive force // J. Appl. Phys. 2011. V. 109. P. 07C735-1–07C35-3.
- Ohe J., Maekawa S. Spin motive force in magnetic nanostructures // J. Appl. Phys. 2009. V. 105. P. 07C706-1–07C706-3.
- Tatara G. Effective gauge field theory of spintronics // Physica E: Low-dimensional Systems and Nanostructures. 2019. V. 106. P. 208–238.
- Berry M.V. Quantal Phase Factors Accompanying Adiabatic Changes // Proc. R. Soc. Lond. A. 1984. V. 392. P. 45–57.
- Stern A. Berry’s Phase, Motive Forces, and Mesoscopic Conductivity // Phys. Rev. Lett. 1992. V. 68. P. 1022–1025.
- Ieda J., Yamane Y., Maekawa S. Spinmotive force in magnetic nanosrtuctures // SPIN. 2013. V. 03. P. 1330004-1–1330004-15.
- Kim K.W., Moon J.H., Lee K.J., Lee H.W. Prediction of Giant Spin Motive Force due to Rashba Spin-Orbit Coupling // Phys. Rev. Lett. 2012. V. 108. P. 217202-1–217202-5.
- Yang S.A., Beach G.S.D., Knutson C., Xian D., Nin Q., Tsoi M., Erskine J.I. Universal Electromotive Force Induced by DomainWall Motion // Phys. Rev. Lett. 2009. V. 102. P. 067201-1–067201-4.
- Nagaosa N. Anomalous Hall effect // Rev. Mod. Phys. 2010. V. 82 P. 1539–1593.
- Rojo A.G. Electron-drag effects in coupled electron systems // J. Phys. Condens. Matter. 1999. V. 11. P. R31–R52.
- Narozhny B.N., Levchenko A. Coulomb drag // Rev. Mod. Phys. 2016. V. 88. P. 025003-1–025003-55.
- D’Amico I., Vignale G. Spin diffusion in doped semiconductors: The role of Coulomb interactions // Europhys. Lett. 2001. V. 55. P. 566–572.
- D’Amico I., Vignale G. Theory of spin Coulomb drag in spin-polarized transport // Phys. Rev. B. 2000. V. 62. P. 4853–4857.
- Lyapilin I.I., Bikkin H.M. Coulomb drag of conduction electrons in spatially separated two-dimensional layers // Fiz. Tverd. Tela. 2003. V. 45. P. 339–344.
- Antti-Pekka Jauho, Smith H. Coulomb drag between parallel two-dimensional electron systems // Phys. Rev. B. 1993. V. 47. P. 4420–4428.
- Bikkin H.M., Lyapilin I.I. Non-equilibrium thermodynamics and physical kinetics, Walter deGruyter, Berlin, 2021. P. 436.
Arquivos suplementares
