INFLUENCE OF THE GAUGE FIELD ON TRANSPORT PHENOMENA IN CONDUCTIVE INHOMOGENEOUS MAGNETIC STRUCTURES
- Authors: Lyapilin I.I.1,2
-
Affiliations:
- Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences
- Ural Federal University
- Issue: Vol 124, No 8 (2023)
- Pages: 726-731
- Section: ЭЛЕКТРИЧЕСКИЕ И МАГНИТНЫЕ СВОЙСТВА
- URL: https://innoscience.ru/0015-3230/article/view/662989
- DOI: https://doi.org/10.31857/S0015323023600995
- EDN: https://elibrary.ru/SXDJAO
- ID: 662989
Cite item
Abstract
The influence of the gauge ("accompanying"), spin-dependent electric field and force induced magnetization dynamics of conducting inhomogeneous magnetic structures, on transport phenomena. It is shown that the transport phenomena, associated with the manifestation of a spin-dependent electric field, lead to the effect of spin Coulomb drag of carriers charge.
Keywords
About the authors
I. I. Lyapilin
Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences; Ural Federal University
Author for correspondence.
Email: lyapilin@imp.uran.ru
Ekaterinburg, 620108 Russia; Ekaterinburg, 620002 Russia
References
- Tserkovnyak Y., Brataas A., Bauer G.E.W. Enhanced Gilbert Damping in Thin Ferromagnetic Films // Phys. Rev. Lett. 2002. V. 88. P. 117601-1–17601-4.
- Berger L. Possible existence of a Josephson effect in ferromagnets // Phys. Rev. B. 1986. V. 33. P. 1572–1578.
- Barnes S.E., Maekawa S. Generalization of Faraday’s law to include nonconservative spin forces // Phys. Rev. Lett. 2007. V. 98. P. 246601-1–24601-4.
- Volovik G.E. Linear momentum in ferromagnets // J. Phys. C 1987. V. 20. P. L83–L87.
- Yamane Y., Ieda J., Ohe J. et al. Equation-of-motion approach of spin-motive force // J. Appl. Phys. 2011. V. 109. P. 07C735-1–07C35-3.
- Ohe J., Maekawa S. Spin motive force in magnetic nanostructures // J. Appl. Phys. 2009. V. 105. P. 07C706-1–07C706-3.
- Tatara G. Effective gauge field theory of spintronics // Physica E: Low-dimensional Systems and Nanostructures. 2019. V. 106. P. 208–238.
- Berry M.V. Quantal Phase Factors Accompanying Adiabatic Changes // Proc. R. Soc. Lond. A. 1984. V. 392. P. 45–57.
- Stern A. Berry’s Phase, Motive Forces, and Mesoscopic Conductivity // Phys. Rev. Lett. 1992. V. 68. P. 1022–1025.
- Ieda J., Yamane Y., Maekawa S. Spinmotive force in magnetic nanosrtuctures // SPIN. 2013. V. 03. P. 1330004-1–1330004-15.
- Kim K.W., Moon J.H., Lee K.J., Lee H.W. Prediction of Giant Spin Motive Force due to Rashba Spin-Orbit Coupling // Phys. Rev. Lett. 2012. V. 108. P. 217202-1–217202-5.
- Yang S.A., Beach G.S.D., Knutson C., Xian D., Nin Q., Tsoi M., Erskine J.I. Universal Electromotive Force Induced by DomainWall Motion // Phys. Rev. Lett. 2009. V. 102. P. 067201-1–067201-4.
- Nagaosa N. Anomalous Hall effect // Rev. Mod. Phys. 2010. V. 82 P. 1539–1593.
- Rojo A.G. Electron-drag effects in coupled electron systems // J. Phys. Condens. Matter. 1999. V. 11. P. R31–R52.
- Narozhny B.N., Levchenko A. Coulomb drag // Rev. Mod. Phys. 2016. V. 88. P. 025003-1–025003-55.
- D’Amico I., Vignale G. Spin diffusion in doped semiconductors: The role of Coulomb interactions // Europhys. Lett. 2001. V. 55. P. 566–572.
- D’Amico I., Vignale G. Theory of spin Coulomb drag in spin-polarized transport // Phys. Rev. B. 2000. V. 62. P. 4853–4857.
- Lyapilin I.I., Bikkin H.M. Coulomb drag of conduction electrons in spatially separated two-dimensional layers // Fiz. Tverd. Tela. 2003. V. 45. P. 339–344.
- Antti-Pekka Jauho, Smith H. Coulomb drag between parallel two-dimensional electron systems // Phys. Rev. B. 1993. V. 47. P. 4420–4428.
- Bikkin H.M., Lyapilin I.I. Non-equilibrium thermodynamics and physical kinetics, Walter deGruyter, Berlin, 2021. P. 436.
