Crack resistance of maraging steel at cyclic loading
- Autores: Simonov Y.N.1, Simonov M.Y.1, Kaletina Y.V.2, Kaletin A.Y.2
-
Afiliações:
- Perm National Research Polytechnic University
- Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences
- Edição: Volume 125, Nº 8 (2024)
- Páginas: 1039-1047
- Seção: ПРОЧНОСТЬ И ПЛАСТИЧНОСТЬ
- URL: https://innoscience.ru/0015-3230/article/view/682668
- DOI: https://doi.org/10.31857/S0015323024080147
- EDN: https://elibrary.ru/JVLOZU
- ID: 682668
Citar
Resumo
The effect of the structure on the strength and crack resistance of maraging steel is studied at cyclic loading. The impact of dispersity of intermetallide precipitates formed during tempering on the cyclic crack resistance is considered. The paper discusses the variation in the characteristics of cyclic crack resistance of the studied steel depending on the elements of its microstructure and on the modes of quenching and ubsequent tempering. It is shown that in a maraging steel with a coarse-grained structure, there is a high level of near-threshold cyclic crack resistance, probably related with the ratio of the number of loading cycles and the size of the cyclic plastic deformation zone.
Sobre autores
Yu. Simonov
Perm National Research Polytechnic University
Email: akalet@imp.uran.ru
Rússia, Perm, 614990
M. Simonov
Perm National Research Polytechnic University
Email: akalet@imp.uran.ru
Rússia, Perm, 614990
Yu. Kaletina
Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences
Email: akalet@imp.uran.ru
Rússia, Ekaterinburg, 620108
A. Kaletin
Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences
Autor responsável pela correspondência
Email: akalet@imp.uran.ru
Rússia, Ekaterinburg, 620108
Bibliografia
- He Y., Yang K., Sha W., Cleland D.J. Microstructure and mechanical properties of a 2000 MPa Co-free maraging steel after aging at 753 K // Metall. Mater. Trans. A. 2004. V. 35. № 9. P. 2747–2755.
- Wang W., Yan W., Duan Q., Shan Y., Zhang Z., Yang K. Study on fatigue property of a new 2.8 GPa grade maraging steel // Mater. Sci. Eng. A. 2010. V. 527. P. 3057–3063.
- Tariq F., Naz N., Baloch R.A. Effect of cycling aging on mechanical properties and microstructure of maraging steel 250 // J. Mater. Eng. Perf. (JMEP). 2010. V. 19. P. 1005–1014.
- Hou H., Li H.F., Jin Y.C., Wang X.R., Wen Z.Q. Effect of heat treatment temperature on the mechanical properties of low-temperature high strength maraging steel // Mater. Sci. Eng. A. 2014. V. 601. P. 1–6.
- Wang B., Duan Q.Q., Zhang P., Zhang Z.J., Li Z.F., Zhang X.W. Investigation on the cracking resistances of different ageing treated 18Ni maraging steels // Mater. Sci. Eng. A. 2020. V. 771. P. 138553.
- Xu Z.K., Wang B., Zhang P., Zhang Z.F. Short fatigue crack growth behavior in 18Ni maraging steel // Mater. Sci. Eng. A. 2021. V. 807. P. 140844.
- Zhang Z., Koyama M., Tsuzaki K., Noguchi H. Three-dimensional characterization of low-cycle fatigue crack morphology in TRIP-maraging steel: Crack closure, geometrical uncertainty and wear // Intern. J. Fatigue. 2021. V. 143. P. 106032.
- Zhang C., Wang C., Zhang S.L., Ding Y.L., Ge Q.L., Su J. Effect of aging temperature on the precipitation behavior and mechanical properties of Fe-Cr-Ni maraging stainless steel // Mater. Sci. Eng. A. 2021. V. 806. P. 140763.
- Li H., Liu Y., Liu B., Wei D.X. Synergistic enhancement of strength and ductility of cobalt-free maraging steel via nanometer-scaled microstructures // Mater. Sci. Eng. A. 2022. V. 842. P. 143099.
- Li J.H., Zhan D.P., Jiang Z.H., Zhang H.S., Yang Y.K., Zhang Y.P. Progress on improving strength-toughness of ultra-high strength martensitic steels for aerospace applications: a review // J. Mater. Research Techn. 2023. V. 23. № 3–4. P. 172–190.
- Rosenauer A., Brandl D., Ressel G., Lukas S., Monschein S., Stockinger M., Schnitzer R. Influence of delta ferrite on the impact toughness of a PH 13-8 Mo maraging steel // Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 2022. V. 856. P. 144024.
- Симонов Ю.Н., Симонов М.Ю., Калетина Ю.В., Калетин А.Ю. Структура и трещиностойкость мартенситностареющих сталей при однократном нагружении // ФММ. 2023. Т. 124. № 10. С. 978–987.
- Paris P.C., Erdogan F.A. Critical Analysis of Crack Propagation Laws // J. Basic Eng. 1963. V. 85. P. 528–533.
- Elber W. The Significance of Fatigue Crack Closure. In: Rosenfeld, M. Ed. Damage Tolerance in Aircraft Structures, ASTM International, West Conshohocken, PA. 1971. P. 230–242.
- Ritchie R.O., Suresh S. Some considerations on fatigue crack closure at near-threshold stress intensities due to fracture surface morphology // Met. Trans. 1982. V. 13A. № 5. P. 937–940.
- Романив О.Н., Никифорчин Г.Н., Студент А.З., Цирульник А.Т. О двух особенностях оценки коррозионной трещиностойкости конструкционных сплавов // ФХММ. 1982. Т. 16. № 1. С. 35–47.
- Георгиев М., Межова Н. Приложна механика на разрушаването. София: Булвест 2000, 2013. 559 с.
- Yoder G.R., Cooley L.A., Crooker T.W. Quantitative analysis of microstructural effects on fatigue crack growth in widmastatten Ti–6Al–4V and Ti–8Al–1Mo–1V // Eng. Fract. Mech. 1979. V. 11. № 4. P. 805–816.
- Симонов Ю.Н. Структурные аспекты прочности и трещиностойкости низкоуглеродистых конструкционных сталей / Дис. д-ра техн. наук. Пермь: ПГТУ, 2004. 383 с.
- Hornbogen E., Zumhgar K-H. Microstructure and fatigue crack growth in a γ-Fe–Ni–Al alloy // Acta Met. 1976. V. 24. № 6. P. 581–592.
Arquivos suplementares
