Трещиностойкость мартенситностареющей стали при циклическом нагружении

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Исследовано влияние структуры на прочность и трещиностойкость мартенситностареющей стали при циклическом нагружении. Рассмотрено влияние дисперсности интерметаллидных выделений, образовавшихся в процессе отпуска, на циклическую трещиностойкость. Обсуждается изменение характеристик циклической трещиностойкости исследованной стали в зависимости от размеров элементов микроструктуры, режимов закалки и последующего отпуска. Показано, что в мартенситностареющей стали с крупнозернистой структурой наблюдается высокий уровень околопороговой циклической трещиностойкости, вероятно, связанный с соотношением числа циклов нагружения и размера зоны циклической пластической деформации.

Об авторах

Ю. Н. Симонов

Пермский национальный исследовательский политехнический университет

Email: akalet@imp.uran.ru
Россия, Комсомольский просп., 29, Пермь, 614990

М. Ю. Симонов

Пермский национальный исследовательский политехнический университет

Email: akalet@imp.uran.ru
Россия, Комсомольский просп., 29, Пермь, 614990

Ю. В. Калетина

Институт физики металлов УрО РАН

Email: akalet@imp.uran.ru
Россия, ул. С. Ковалевской, 18, Екатеринбург, 620108

А. Ю. Калетин

Институт физики металлов УрО РАН

Автор, ответственный за переписку.
Email: akalet@imp.uran.ru
Россия, ул. С. Ковалевской, 18, Екатеринбург, 620108

Список литературы

  1. He Y., Yang K., Sha W., Cleland D.J. Microstructure and mechanical properties of a 2000 MPa Co-free maraging steel after aging at 753 K // Metall. Mater. Trans. A. 2004. V. 35. № 9. P. 2747–2755.
  2. Wang W., Yan W., Duan Q., Shan Y., Zhang Z., Yang K. Study on fatigue property of a new 2.8 GPa grade maraging steel // Mater. Sci. Eng. A. 2010. V. 527. P. 3057–3063.
  3. Tariq F., Naz N., Baloch R.A. Effect of cycling aging on mechanical properties and microstructure of maraging steel 250 // J. Mater. Eng. Perf. (JMEP). 2010. V. 19. P. 1005–1014.
  4. Hou H., Li H.F., Jin Y.C., Wang X.R., Wen Z.Q. Effect of heat treatment temperature on the mechanical properties of low-temperature high strength maraging steel // Mater. Sci. Eng. A. 2014. V. 601. P. 1–6.
  5. Wang B., Duan Q.Q., Zhang P., Zhang Z.J., Li Z.F., Zhang X.W. Investigation on the cracking resistances of different ageing treated 18Ni maraging steels // Mater. Sci. Eng. A. 2020. V. 771. P. 138553.
  6. Xu Z.K., Wang B., Zhang P., Zhang Z.F. Short fatigue crack growth behavior in 18Ni maraging steel // Mater. Sci. Eng. A. 2021. V. 807. P. 140844.
  7. Zhang Z., Koyama M., Tsuzaki K., Noguchi H. Three-dimensional characterization of low-cycle fatigue crack morphology in TRIP-maraging steel: Crack closure, geometrical uncertainty and wear // Intern. J. Fatigue. 2021. V. 143. P. 106032.
  8. Zhang C., Wang C., Zhang S.L., Ding Y.L., Ge Q.L., Su J. Effect of aging temperature on the precipitation behavior and mechanical properties of Fe-Cr-Ni maraging stainless steel // Mater. Sci. Eng. A. 2021. V. 806. P. 140763.
  9. Li H., Liu Y., Liu B., Wei D.X. Synergistic enhancement of strength and ductility of cobalt-free maraging steel via nanometer-scaled microstructures // Mater. Sci. Eng. A. 2022. V. 842. P. 143099.
  10. Li J.H., Zhan D.P., Jiang Z.H., Zhang H.S., Yang Y.K., Zhang Y.P. Progress on improving strength-toughness of ultra-high strength martensitic steels for aerospace applications: a review // J. Mater. Research Techn. 2023. V. 23. № 3–4. P. 172–190.
  11. Rosenauer A., Brandl D., Ressel G., Lukas S., Monschein S., Stockinger M., Schnitzer R. Influence of delta ferrite on the impact toughness of a PH 13-8 Mo maraging steel // Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 2022. V. 856. P. 144024.
  12. Симонов Ю.Н., Симонов М.Ю., Калетина Ю.В., Калетин А.Ю. Структура и трещиностойкость мартенситностареющих сталей при однократном нагружении // ФММ. 2023. Т. 124. № 10. С. 978–987.
  13. Paris P.C., Erdogan F.A. Critical Analysis of Crack Propagation Laws // J. Basic Eng. 1963. V. 85. P. 528–533.
  14. Elber W. The Significance of Fatigue Crack Closure. In: Rosenfeld, M. Ed. Damage Tolerance in Aircraft Structures, ASTM International, West Conshohocken, PA. 1971. P. 230–242.
  15. Ritchie R.O., Suresh S. Some considerations on fatigue crack closure at near-threshold stress intensities due to fracture surface morphology // Met. Trans. 1982. V. 13A. № 5. P. 937–940.
  16. Романив О.Н., Никифорчин Г.Н., Студент А.З., Цирульник А.Т. О двух особенностях оценки коррозионной трещиностойкости конструкционных сплавов // ФХММ. 1982. Т. 16. № 1. С. 35–47.
  17. Георгиев М., Межова Н. Приложна механика на разрушаването. София: Булвест 2000, 2013. 559 с.
  18. Yoder G.R., Cooley L.A., Crooker T.W. Quantitative analysis of microstructural effects on fatigue crack growth in widmastatten Ti–6Al–4V and Ti–8Al–1Mo–1V // Eng. Fract. Mech. 1979. V. 11. № 4. P. 805–816.
  19. Симонов Ю.Н. Структурные аспекты прочности и трещиностойкости низкоуглеродистых конструкционных сталей / Дис. д-ра техн. наук. Пермь: ПГТУ, 2004. 383 с.
  20. Hornbogen E., Zumhgar K-H. Microstructure and fatigue crack growth in a γ-Fe–Ni–Al alloy // Acta Met. 1976. V. 24. № 6. P. 581–592.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML