Influence of the temperature of high pressure torsion deformation on the recrystallization kinetics of iron with a submicrocrystalline structure

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The kinetics of recrystallization of pure iron deformed by high pressure torsion at 20 and 250°C has been studied in the course of annealing at 450°C. The change in grain size upon annealing at 450°C does not obey the law of normal grain growth, either in iron with an SMC structure formed at 20°C or in iron with a dynamically recrystallized structure formed at 250°C. This is because new thermally activated recrystallization centers appear upon annealing. The study has also established the influence of deformation temperature on the annealing texture. Similarly, after deformation at 20°C, a sharper texture is formed with a predominance of two components {110} <111> and {110} <001>, and after deformation at 250°C, with a predominance of three components {110} <111>, {110} <001> and {112} <111>, is formed.

全文:

受限制的访问

作者简介

L. Voronova

Miheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: highpress@imp.uran.ru
俄罗斯联邦, 620108, Ekaterinburg

М. Degtyarev

Miheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Email: highpress@imp.uran.ru
俄罗斯联邦, 620108, Ekaterinburg

T. Chashchukhina

Miheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Email: highpress@imp.uran.ru
俄罗斯联邦, 620108, Ekaterinburg

参考

  1. Zhou X., Li X.Y., Lu K. Enhanced thermal stability of nanograined metals below a critical grain size // Scince. 2018. V. 360. P. 526–530.
  2. Zhou X., Li X.Y., Lu K. Stabilizing nanograins in metals with grain boundary relaxation //Scripta Mater. 2020. V. 187. P. 345–349.
  3. Li X.Y., Zhou X., Lu K. Rapid heating induced ultrahigh stability of nanograined copper // Science. Adv. 2020. V. 6. P. eaaz8003.
  4. Murty B.S., Datta M.K. and Pabi S.K. Structure and thermal stability of nanocrystalline materials // S¯adhan¯a. 2003. V. 28. № 1 & 2. P. 23–45.
  5. Чувильдеев В.Н., Копылов В.И., Нохрин А.В., Макаров И.М., Грязнов М.Ю. Рекристаллизация в микрокристаллических меди и никеле, полученных методами РКУ-прессования. III. Аномальный рост зерен. Модель // ФММ. 2004. Т. 97. № 1. С. 3–8.
  6. Горелик С.С., Добаткин С.В., Капуткина Л.М. Рекристаллизация металлов и сплавов. М.: МИСиС, 2005. 432 с.
  7. Дегтярев М.В., Воронова Л.М., Губернаторов В.В., Чащухина Т.И. О термической стабильности микрокристаллической структуры в однофазных металлических материалах // ДАН. 2002. Т. 386. № 2. С. 180–183.
  8. Takayama A., Yang X., Miura H., Sakai T. Continuous static recrystallization in ultrafine-grained copper processed by multi-directional forging // Mater. Sci. Eng. A. 2008. V. 478. P. 221–228
  9. Jiang H., Zhu Y.T., Butt D.P., Alexandrov I.V., Lowe T.C. Microstructural evolution, microhardness and thermal stability of HPT-processed Cu // Mater. Sci. Eng. A. 2000. V. 290. P. 128–138
  10. Voronova L.M., Degtyarev M.V., Chashchukhina T.I., Krasnoperova Yu.G., Resnina N.N. Effect of dynamic recovery on structure formation in nickel upon high-pressure torsion and subsequent annealing // Mater. Sci. Eng. A. 2015. V. 639. Р. 155–164.
  11. Zhang H.W., Huang X., Pippan R., Hansen N. Thermal behavior of Ni (99.967% and 99.5% purity) deformed to an ultra-high strain by high pressure torsion // Acta Mater. 2010. V. 58. 1698–1707.
  12. Degtyarev M., Chashchukhina T., Voronova L., Gapontseva T., Levit V. Evolution of microstructure and microtexture upon recrystallization of submicrocrystalline niobium // International Journal of Refractory Metals & Hard Materials. 2020. V. 86. P. 105117.
  13. Popov V.V., Popova E.N. Behavior of Nb and CuNb Composites under Severe Plastic Deformation and Annealing // Mater. Trans. 2019. V. 60. No. 7. P. 1209–1220.
  14. Stotskiy A.G., Polyakov A.V., Dyakonov G.S. and. Semenova I.P. Thermal Stability of Titanium Alloy VT8M-1 with Ultrafine-Grained Structure// MATEC Web of Conferences. 2020. V. 321. P. 11060.
  15. Дегтярев М.В., Воронова Л.М., Чащухина Т.И. Влияние структуры, созданной при большой пластической деформации, на кинетику превращений при нагреве // Металлы. 2003. № 3. С. 53–61.
  16. Воронова Л.М., Дегтярев М.В., Чащухина Т.И. Низкотемпературная рекристаллизация субмикрокристаллической структуры армко-железа и стали 30Г2Р // ФММ. 2004. Т. 98. № 1. С. 93–102.
  17. Воронова Л.М., Дегтярев М.В., Чащухина Т.И. Рекристаллизация ультрадисперсной структуры чистого железа, сформированной на разных стадиях деформационного наклепа // ФММ. 2007. Т. 104. № 3. С. 275–286.
  18. Воронова Л.М., Дегтярев М.В., Чащухина Т.И. Кинетика роста зерна при нагреве никеля, деформированного сдвигом под давлением // ФММ. 2021. Т. 122. № 6. С. 600–607.
  19. Красноперова Ю.Г., Дегтярев М.В., Воронова Л.М., Чащухина Т.И. Влияние температуры отжига на рекристаллизацию никеля с ультрадисперсной структурой различного типа // ФММ. 2016. Т. 117. № 3. С. 279–286.
  20. Jie Xu, Jianwei Li, Chuan Ting Wang, Debin Shan, Bin Guo, Langdon T.G. Evidence for an early softening behavior in pure copper processed by high-pressure torsion // J. Mater. Sci. 2016. V. 51. P. 1923–1930.
  21. Dudova N., Belyakov A., Sakai T., Kaibyshev R. Dynamic recrystallization mechanisms operating in a Ni-20%Cr alloy under hot-to-warm working // Acta Mater. 2010. V. 58. P. 3624–3632.
  22. Edalati K., Horita Z., Furuta T., Kuramoto S. Dynamic recrystallization and recovery during high-pressure torsion: Experimental evidence by torque measurement using ring specimens // Mater. Sci. Eng. A. 2013. V. 559. P. 506–509.
  23. Карамышев К.Ю., Чащухина Т.И., Воронова Л.М., Дегтярев М.В., Пилюгин В.П. Температурно-скоростные условия деформации и структурообразующие процессы в никеле при сдвиге под давлением//ФММ. 2023. Т. 124. № 1. С. 106–113.
  24. Шугаев К.Е., Дегтярев М.В., Воронова Л.М., Чащухина Т.И. Рост зерна при отжиге железа, деформированного при 250C методом сдвига под давлением // ФММ. 2022. Т. 123. № 10. С. 1046–1053.
  25. Bernardi H.H., Sandim H.R.Z., Zilnyk K.D., Verlinden B., Raabe D. Microstructural Stability of a Niobium Single Crystal Deformed by Equal Channel Angular Pressing // Materials Research. 2017. V. 20. P. 1238–1247.
  26. Humphreys F.J. Review grain and subgrain characterisation by electron backscatter diffraction // J. Mater. Sci. 2001. V. 36. Р. 3833–3854.
  27. Дегтярев М.В., Чащухина Т.И., Воронова Л.М., Пацелов А.М. Влияние деформации сдвигом под давлением на параметры структуры железа и конструкционной стали 30Г2Р // Материаловедение. 2003. № 2. С. 28–31.
  28. Ratanaphan S., Olmsted D.L., Bulatov V.V., Holm E.A., Rollett A.D., Rohrer G.S. Grain boundary energies in body-centered cubic metals // Acta Mater. 2015. V. 88. P. 346–354.
  29. Azzeddine H., Bradai D., Baudin T., Langdon T.G. Texture evolution in high-pressure torsion processing // Progress Mater. Sci. 2022. V. 125. P. 100886.
  30. Duan J., Wen H., Zhou C., Islamgaliev R., Li X. Evolution of microstructure and texture during annealing in a high-pressure torsion processed Fe-9Cr alloy // Materialia. 2019. V. 6. P. 100349.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. The structure of iron after deformation at 250 °C (a, b) and 20°C (c, d); a, c – light–field images; b, d - dark-field images in the reflex type {110}. PEM.

下载 (272KB)
3. Fig. 2. Hardness change (H) as a result of annealing at 450 ° C of iron deformed at 20 (O) and 250 °C (■).

下载 (41KB)
4. Fig. 3. The structure of iron after deformation at 250 °C and annealing at 450 ° C, 15 min (a, b) and histograms of grain size distribution (c) and boundaries at the angles of disorientation (d); a – light–field image, TEM; b - orientation map in OPF colors; (g–d) – RAM.

下载 (336KB)
5. Fig. 4. The structure of iron after deformation at 20 °C and annealing at 450 °C, 15 min (a, b) and histograms of grain size distribution (c) and boundaries at the misorientation angles, a solid line in the background shows the distribution characteristic of a random ensemble of grains (d); a – light–field image, PEM, b - contrast map of Kikuchi paintings (reconstructed image obtained based on the analysis of the quality of the diffraction pattern), (g–d) – RAM.

下载 (300KB)
6. Fig. 5. The structure of iron (a–c) and histograms of grain size distribution (d) and boundaries at the angles of disorientation (e) after deformation at 250 °C and annealing at 450 ° C, 30 min; a, b – PEM, b – dark-field image in a reflex type {110}, c – contrast map of Kikuchi paintings (restored image); (c–e) – REM.

下载 (405KB)
7. Fig. 6. Dependences of the average (■, ●) and maximum grain size (▲, ▲) on the duration of annealing of iron deformed at 250 (a) and 20 °C (b). Filled icons – SEM, transparent icons (□, ○) – the size of the structural elements averaged according to TEM data. In Fig. 6b, the dotted line for comparison shows the dependence for iron deformed at 20 ° C and annealed at 300 °From [7].

下载 (104KB)
8. Rhys. 7. The structure of the glands (a, b-orientation maps in OPF colors) and histograms are distributed by grain size (b, d) then deformations and annealing at 450 °C; (a, b) deformations at 20°C, annealing for 1 hour; (c, d) deformations at 250 °C, annealing for 4 hours, REM.

下载 (298KB)
9. Reece. 8. Obratnye polyusny figure [001], poluchennye metodom YAA s JELEZA, deformirovannogo PRI 20 (a–G) I 250 Yaa s (D–Z) I otojjennogo PRI 450 Yaa s V techenie: a – 15 min; B, E – 30 min; v – 1 Ch; J – 4 CH; G, z – 16 ch; d – bez otjiga.

下载 (237KB)
10. Rhys. 9. Standard sections of FRO showing the position of component textures of BCC metals deformed by the “pressure shift” method [29] (a) and experimentally obtained by the EBSD method sections of FRO glands deformed at 20 (b-d) and 250 °C (D–z) and annealed at 450°C during: b, e – 15 min; c, w – 30 min g, w – 1 h; D – without annealing.

下载 (331KB)
11. Fig. 10. Change in the proportion of the area occupied by grains with an orientation of {110} during annealing at 450 ° C of iron deformed at 20 ° C (O) and 250 °C (■).

下载 (44KB)