Influence of the temperature of high pressure torsion deformation on the recrystallization kinetics of iron with a submicrocrystalline structure

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The kinetics of recrystallization of pure iron deformed by high pressure torsion at 20 and 250°C has been studied in the course of annealing at 450°C. The change in grain size upon annealing at 450°C does not obey the law of normal grain growth, either in iron with an SMC structure formed at 20°C or in iron with a dynamically recrystallized structure formed at 250°C. This is because new thermally activated recrystallization centers appear upon annealing. The study has also established the influence of deformation temperature on the annealing texture. Similarly, after deformation at 20°C, a sharper texture is formed with a predominance of two components {110} <111> and {110} <001>, and after deformation at 250°C, with a predominance of three components {110} <111>, {110} <001> and {112} <111>, is formed.

Full Text

Restricted Access

About the authors

L. M. Voronova

Miheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Author for correspondence.
Email: highpress@imp.uran.ru
Russian Federation, 620108, Ekaterinburg

М. V. Degtyarev

Miheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Email: highpress@imp.uran.ru
Russian Federation, 620108, Ekaterinburg

T. I. Chashchukhina

Miheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Email: highpress@imp.uran.ru
Russian Federation, 620108, Ekaterinburg

References

  1. Zhou X., Li X.Y., Lu K. Enhanced thermal stability of nanograined metals below a critical grain size // Scince. 2018. V. 360. P. 526–530.
  2. Zhou X., Li X.Y., Lu K. Stabilizing nanograins in metals with grain boundary relaxation //Scripta Mater. 2020. V. 187. P. 345–349.
  3. Li X.Y., Zhou X., Lu K. Rapid heating induced ultrahigh stability of nanograined copper // Science. Adv. 2020. V. 6. P. eaaz8003.
  4. Murty B.S., Datta M.K. and Pabi S.K. Structure and thermal stability of nanocrystalline materials // S¯adhan¯a. 2003. V. 28. № 1 & 2. P. 23–45.
  5. Чувильдеев В.Н., Копылов В.И., Нохрин А.В., Макаров И.М., Грязнов М.Ю. Рекристаллизация в микрокристаллических меди и никеле, полученных методами РКУ-прессования. III. Аномальный рост зерен. Модель // ФММ. 2004. Т. 97. № 1. С. 3–8.
  6. Горелик С.С., Добаткин С.В., Капуткина Л.М. Рекристаллизация металлов и сплавов. М.: МИСиС, 2005. 432 с.
  7. Дегтярев М.В., Воронова Л.М., Губернаторов В.В., Чащухина Т.И. О термической стабильности микрокристаллической структуры в однофазных металлических материалах // ДАН. 2002. Т. 386. № 2. С. 180–183.
  8. Takayama A., Yang X., Miura H., Sakai T. Continuous static recrystallization in ultrafine-grained copper processed by multi-directional forging // Mater. Sci. Eng. A. 2008. V. 478. P. 221–228
  9. Jiang H., Zhu Y.T., Butt D.P., Alexandrov I.V., Lowe T.C. Microstructural evolution, microhardness and thermal stability of HPT-processed Cu // Mater. Sci. Eng. A. 2000. V. 290. P. 128–138
  10. Voronova L.M., Degtyarev M.V., Chashchukhina T.I., Krasnoperova Yu.G., Resnina N.N. Effect of dynamic recovery on structure formation in nickel upon high-pressure torsion and subsequent annealing // Mater. Sci. Eng. A. 2015. V. 639. Р. 155–164.
  11. Zhang H.W., Huang X., Pippan R., Hansen N. Thermal behavior of Ni (99.967% and 99.5% purity) deformed to an ultra-high strain by high pressure torsion // Acta Mater. 2010. V. 58. 1698–1707.
  12. Degtyarev M., Chashchukhina T., Voronova L., Gapontseva T., Levit V. Evolution of microstructure and microtexture upon recrystallization of submicrocrystalline niobium // International Journal of Refractory Metals & Hard Materials. 2020. V. 86. P. 105117.
  13. Popov V.V., Popova E.N. Behavior of Nb and CuNb Composites under Severe Plastic Deformation and Annealing // Mater. Trans. 2019. V. 60. No. 7. P. 1209–1220.
  14. Stotskiy A.G., Polyakov A.V., Dyakonov G.S. and. Semenova I.P. Thermal Stability of Titanium Alloy VT8M-1 with Ultrafine-Grained Structure// MATEC Web of Conferences. 2020. V. 321. P. 11060.
  15. Дегтярев М.В., Воронова Л.М., Чащухина Т.И. Влияние структуры, созданной при большой пластической деформации, на кинетику превращений при нагреве // Металлы. 2003. № 3. С. 53–61.
  16. Воронова Л.М., Дегтярев М.В., Чащухина Т.И. Низкотемпературная рекристаллизация субмикрокристаллической структуры армко-железа и стали 30Г2Р // ФММ. 2004. Т. 98. № 1. С. 93–102.
  17. Воронова Л.М., Дегтярев М.В., Чащухина Т.И. Рекристаллизация ультрадисперсной структуры чистого железа, сформированной на разных стадиях деформационного наклепа // ФММ. 2007. Т. 104. № 3. С. 275–286.
  18. Воронова Л.М., Дегтярев М.В., Чащухина Т.И. Кинетика роста зерна при нагреве никеля, деформированного сдвигом под давлением // ФММ. 2021. Т. 122. № 6. С. 600–607.
  19. Красноперова Ю.Г., Дегтярев М.В., Воронова Л.М., Чащухина Т.И. Влияние температуры отжига на рекристаллизацию никеля с ультрадисперсной структурой различного типа // ФММ. 2016. Т. 117. № 3. С. 279–286.
  20. Jie Xu, Jianwei Li, Chuan Ting Wang, Debin Shan, Bin Guo, Langdon T.G. Evidence for an early softening behavior in pure copper processed by high-pressure torsion // J. Mater. Sci. 2016. V. 51. P. 1923–1930.
  21. Dudova N., Belyakov A., Sakai T., Kaibyshev R. Dynamic recrystallization mechanisms operating in a Ni-20%Cr alloy under hot-to-warm working // Acta Mater. 2010. V. 58. P. 3624–3632.
  22. Edalati K., Horita Z., Furuta T., Kuramoto S. Dynamic recrystallization and recovery during high-pressure torsion: Experimental evidence by torque measurement using ring specimens // Mater. Sci. Eng. A. 2013. V. 559. P. 506–509.
  23. Карамышев К.Ю., Чащухина Т.И., Воронова Л.М., Дегтярев М.В., Пилюгин В.П. Температурно-скоростные условия деформации и структурообразующие процессы в никеле при сдвиге под давлением//ФММ. 2023. Т. 124. № 1. С. 106–113.
  24. Шугаев К.Е., Дегтярев М.В., Воронова Л.М., Чащухина Т.И. Рост зерна при отжиге железа, деформированного при 250C методом сдвига под давлением // ФММ. 2022. Т. 123. № 10. С. 1046–1053.
  25. Bernardi H.H., Sandim H.R.Z., Zilnyk K.D., Verlinden B., Raabe D. Microstructural Stability of a Niobium Single Crystal Deformed by Equal Channel Angular Pressing // Materials Research. 2017. V. 20. P. 1238–1247.
  26. Humphreys F.J. Review grain and subgrain characterisation by electron backscatter diffraction // J. Mater. Sci. 2001. V. 36. Р. 3833–3854.
  27. Дегтярев М.В., Чащухина Т.И., Воронова Л.М., Пацелов А.М. Влияние деформации сдвигом под давлением на параметры структуры железа и конструкционной стали 30Г2Р // Материаловедение. 2003. № 2. С. 28–31.
  28. Ratanaphan S., Olmsted D.L., Bulatov V.V., Holm E.A., Rollett A.D., Rohrer G.S. Grain boundary energies in body-centered cubic metals // Acta Mater. 2015. V. 88. P. 346–354.
  29. Azzeddine H., Bradai D., Baudin T., Langdon T.G. Texture evolution in high-pressure torsion processing // Progress Mater. Sci. 2022. V. 125. P. 100886.
  30. Duan J., Wen H., Zhou C., Islamgaliev R., Li X. Evolution of microstructure and texture during annealing in a high-pressure torsion processed Fe-9Cr alloy // Materialia. 2019. V. 6. P. 100349.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The structure of iron after deformation at 250 °C (a, b) and 20°C (c, d); a, c – light–field images; b, d - dark-field images in the reflex type {110}. PEM.

Download (272KB)
3. Fig. 2. Hardness change (H) as a result of annealing at 450 ° C of iron deformed at 20 (O) and 250 °C (■).

Download (41KB)
4. Fig. 3. The structure of iron after deformation at 250 °C and annealing at 450 ° C, 15 min (a, b) and histograms of grain size distribution (c) and boundaries at the angles of disorientation (d); a – light–field image, TEM; b - orientation map in OPF colors; (g–d) – RAM.

Download (336KB)
5. Fig. 4. The structure of iron after deformation at 20 °C and annealing at 450 °C, 15 min (a, b) and histograms of grain size distribution (c) and boundaries at the misorientation angles, a solid line in the background shows the distribution characteristic of a random ensemble of grains (d); a – light–field image, PEM, b - contrast map of Kikuchi paintings (reconstructed image obtained based on the analysis of the quality of the diffraction pattern), (g–d) – RAM.

Download (300KB)
6. Fig. 5. The structure of iron (a–c) and histograms of grain size distribution (d) and boundaries at the angles of disorientation (e) after deformation at 250 °C and annealing at 450 ° C, 30 min; a, b – PEM, b – dark-field image in a reflex type {110}, c – contrast map of Kikuchi paintings (restored image); (c–e) – REM.

Download (405KB)
7. Fig. 6. Dependences of the average (■, ●) and maximum grain size (▲, ▲) on the duration of annealing of iron deformed at 250 (a) and 20 °C (b). Filled icons – SEM, transparent icons (□, ○) – the size of the structural elements averaged according to TEM data. In Fig. 6b, the dotted line for comparison shows the dependence for iron deformed at 20 ° C and annealed at 300 °From [7].

Download (104KB)
8. Rhys. 7. The structure of the glands (a, b-orientation maps in OPF colors) and histograms are distributed by grain size (b, d) then deformations and annealing at 450 °C; (a, b) deformations at 20°C, annealing for 1 hour; (c, d) deformations at 250 °C, annealing for 4 hours, REM.

Download (298KB)
9. Reece. 8. Obratnye polyusny figure [001], poluchennye metodom YAA s JELEZA, deformirovannogo PRI 20 (a–G) I 250 Yaa s (D–Z) I otojjennogo PRI 450 Yaa s V techenie: a – 15 min; B, E – 30 min; v – 1 Ch; J – 4 CH; G, z – 16 ch; d – bez otjiga.

Download (237KB)
10. Rhys. 9. Standard sections of FRO showing the position of component textures of BCC metals deformed by the “pressure shift” method [29] (a) and experimentally obtained by the EBSD method sections of FRO glands deformed at 20 (b-d) and 250 °C (D–z) and annealed at 450°C during: b, e – 15 min; c, w – 30 min g, w – 1 h; D – without annealing.

Download (331KB)
11. Fig. 10. Change in the proportion of the area occupied by grains with an orientation of {110} during annealing at 450 ° C of iron deformed at 20 ° C (O) and 250 °C (■).

Download (44KB)