The Drosophila Zinc Finger Proteins Aef1 and Cg10543 Are Co-Localized with SAGA, SWI/SNF and ORC Complexes on Gene Promoters and Involved in Transcription Regulation
- Authors: Nikolenko J.V.1, Kurshakova M.M.1, Kopytova D.V.1, Vdovina Y.A.1, Vorobyova N.E.2, Krasnov A.N.2
-
Affiliations:
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences
- Институт биологии гена Российской академии наук
- Issue: Vol 58, No 4 (2024)
- Pages: 619–626
- Section: МОЛЕКУЛЯРНАЯ БИОЛОГИЯ КЛЕТКИ
- URL: https://innoscience.ru/0026-8984/article/view/655306
- DOI: https://doi.org/10.31857/S0026898424040087
- EDN: https://elibrary.ru/IMOGAY
- ID: 655306
Cite item
Abstract
In previous studies, we purified the DUB-module of the Drosophila SAGA complex and showed that a number of zinc proteins interact with it, including Aef1 and CG10543. In this work, we conducted a genome-wide study of the Aef1 and CG10543 proteins and showed that they are localized predominantly on the promoters of active genes. The binding sites of these proteins colocalize with the SAGA and dSWI/SNF chromatin modification and remodeling complexes, as well as with the ORC replication complex. It has been shown that the Aef1 and CG10543 proteins are involved in the regulation of the expression of some genes on the promoters of which they are located. Thus, the Aef1 and CG10543 proteins are new participants in the cell transcriptional network and colocalize with the main transcription and replication complexes of Drosophila.
Full Text

About the authors
J. V. Nikolenko
Engelhardt Institute of Molecular Biology, Russian Academy of Sciences
Email: krasnov@genebiology.ru
Russian Federation, Moscow, 119991
M. M. Kurshakova
Engelhardt Institute of Molecular Biology, Russian Academy of Sciences
Email: krasnov@genebiology.ru
Russian Federation, Moscow, 119991
D. V. Kopytova
Engelhardt Institute of Molecular Biology, Russian Academy of Sciences
Email: krasnov@genebiology.ru
Russian Federation, Moscow, 119991
Y. A. Vdovina
Engelhardt Institute of Molecular Biology, Russian Academy of Sciences
Email: krasnov@genebiology.ru
Russian Federation, Moscow, 119991
N. E. Vorobyova
Институт биологии гена Российской академии наук
Email: krasnov@genebiology.ru
Russian Federation, Москва, 119334
A. N. Krasnov
Институт биологии гена Российской академии наук
Author for correspondence.
Email: krasnov@genebiology.ru
Russian Federation, Москва, 119334
References
- Koutelou E., Hirsch C.L., Dent S.Y. (2010) Multiple faces of the SAGA complex. Curr. Opin. Cell. Biol. 22, 374–382.
- Baker S.P., Grant P.A. (2007) The SAGA continues: expanding the cellular role of a transcriptional co-activator complex. Oncogene. 26, 5329–5340.
- Brown C.E., Howe L., Sousa K., Alley S.C., Carrozza M.J., Tan S., Workman J.L. (2001) Recruitment of HAT complexes by direct activator interactions with the ATM-related Tra1 subunit. Science. 292, 2333–2337.
- Chatterjee N., Sinha D., Lemma-Dechassa M., Tan S., Shogren-Knaak M.A., Bartholomew B. (2011) Histone H3 tail acetylation modulates ATP-dependent remodeling through multiple mechanisms. Nucl. Acids Res. 39, 8378–8391.
- Li B., Carey M., Workman J.L. (2007) The role of chromatin during transcription. Cell. 128, 707–719.
- MacAlpine D.M., Rodriguez H.K., Bell S.P. (2004) Coordination of replication and transcription along a Drosophila chromosome. Genes Dev. 18, 3094–3105.
- Eaton M.L., Prinz J.A., MacAlpine H.K., Tretyakov G., Kharchenko P.V., MacAlpine D.M. (2011) Chromatin signatures of the Drosophila replication program. Genome Res. 21, 164–174.
- Vorobyeva N.E., Mazina M.U., Golovnin A.K., Kopytova D.V., Gurskiy D.Y., Nabirochkina E.N., Georgieva S.G., Georgiev P.G., Krasnov A.N. (2013) Insulator protein Su(Hw) recruits SAGA and Brahma complexes and constitutes part of Origin Recognition Complex-binding sites in the Drosophila genome. Nucl. Acids Res. 41, 5717–5730.
- Мазина М.Ю., Воробьева Н.Е., Краснов А.Н. (2013) Способность Su(Hw) создавать платформу для формирования ориджинов репликации не зависит от типа окружающего хроматина. Цитология. 55(4), 218–224.
- Kurshakova M., Maksimenko O., Golovnin A., Pulina M., Georgieva S., Georgiev P., Krasnov A. (2007) Evolutionarily conserved E(y)2/Sus1 protein is essential for the barrier activity of Su(Hw)-dependent insulators in Drosophila. Mol. Cell. 27, 332–338.
- Vorobyeva N.E., Erokhin M., Chetverina D., Krasnov A.N., Mazina M.Y. (2021) Su(Hw) primes 66D and 7F Drosophila chorion genes loci for amplification through chromatin decondensation. Sci. Rep. 11, 16963.
- Vorobyeva N.E., Nikolenko J.V., Krasnov A.N., Kuzmina J.L., Panov V.V., Nabirochkina E.N., Georgieva S.G., Shidlovskii Y.V. (2011) SAYP interacts with DHR3 nuclear receptor and participates in ecdysone-dependent transcription regulation. Cell Cycle. 10, 1821–1827.
- Kopytova D.V., Krasnov A.N., Orlova A.V., Gurskiy D.Y., Nabirochkina E.N., Georgieva S.G., Shidlovskii Y.V. (2010) ENY2: couple, triple…more? Cell Cycle. 9, 479–481.
- Krasnov A.N., Kurshakova M.M., Ramensky V.E., Mardanov P.V., Nabirochkina E.N., Georgieva S.G. (2005) A retrocopy of a gene can functionally displace the source gene in evolution. Nucl. Acids Res. 33, 6654–6661.
- Gurskiy D., Orlova A., Vorobyeva N., Nabirochkina E., Krasnov A., Shidlovskii Y., Georgieva S., Kopytova D. (2012) The DUBm subunit Sgf11 is required for mRNA export and interacts with Cbp80 in Drosophila. Nucl. Acids Res. 40, 10689–10700.
- Николенко Ю.В., Фурсова Н.А., Мазина М.Ю., Воробьева Н.Е., Краснов А.Н. (2022) Белок CG9890 дрозофилы участвует в регуляции экдизонзависимой транскрипции. Молекуляр. биология. 56(4), 557–563.
- Фурсова Н.А., Мазина М.Ю., Николенко Ю.В., Воробьева Н.Е., Краснов А.Н. (2020) Белок CG9890 дрозофилы, содержащий домены цинковых пальцев, колокализуется с комплексами модификации и ремоделирования хроматина на промоторах генов и участвует в регуляции транскрипции. Acta Naturae. 12, 114–119.
- Фурсова Н.А., Николенко Ю.В., Сошникова Н.В., Мазина М.Ю., Воробьева Н.Е., Краснов А.Н. (2018) Белок CG9890 с доменами цинковых пальцев – новый компонент ENY2-содержащих комплексов дрозофилы. Acta Naturae. 10, 110–114.
- Николенко Ю.В., Вдовина Ю.А., Фефелова Е.И., Глухова А.А., Набирочкина Е.Н., Копытова Д.В. (2021) Деубиквитинирующий (DUB) модуль SAGA участвует в Pol III-зависимой транскрипции. Молекуляр. биология. 55(3), 500–509.
- Enuameh M.S., Asriyan Y., Richards A., Christensen R.G., Hall V.L., Kazemian M., Zhu C., Pham H., Cheng Q., Blatti C., Brasefield J.A., Basciotta M.D., Ou J., McNulty J.C., Zhu L.J., Celniker S.E., Sinha S., Stormo G.D., Brodsky M.H., Wolfe S.A. (2013) Global analysis of Drosophila Cys(2)-His(2) zinc finger proteins reveals a multitude of novel recognition motifs and binding determinants. Genome Res. 23, 928–940.
- Laity J.H., Dyson H.J., Wright P.E. (2000) DNA-induced alpha-helix capping in conserved linker sequences is a determinant of binding affinity in Cys(2)-His(2) zinc fingers. J. Mol. Biol. 295, 719–727.
- Clemens J.C., Worby C.A., Simonson-Leff N., Muda M., Maehama T., Hemmings B.A., Dixon J.E. (2000) Use of double-stranded RNA interference in Drosophila cell lines to dissect signal transduction pathways. Proc. Natl. Acad. Sci. USA. 97, 6499–6503.
Supplementary files
