Molecular Ion Channel Blockers of Influenza A and SARS-CoV-2 Viruses
- Authors: Vorobjev Y.N.1
-
Affiliations:
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch Russia Academy of Sciences
- Issue: Vol 58, No 4 (2024)
- Pages: 665–680
- Section: МОЛЕКУЛЯРНАЯ БИОЛОГИЯ КЛЕТКИ
- URL: https://innoscience.ru/0026-8984/article/view/655311
- DOI: https://doi.org/10.31857/S0026898424040125
- EDN: https://elibrary.ru/IMBPHX
- ID: 655311
Cite item
Abstract
Drug molecules that block the functional cycle of influenza A and SARS-CoV-2 viruses are proposed. The blocker molecules effectively binding inside the M2 and E-channels of influenza A and SARS-CoV-2 viruses and blocking the diffusion of H+/K+ ions destroy the functional cycle of viruses. A family of positively charged, +2 e. u., molecular blockers of H+ /K+ ion diffusion through M2 and E-channels is proposed. The blocker molecules, derivatives of diazabicyclooctane, was investigated for its binding affinity to the channels M2 and E. Thermal dynamics and binding affinity were modeled by the exhaustive docking method sites. Blocker molecules with higher affinity for the blocking sites were proposed. The most probable mutations of amino acids of protein M2 and E channels are considered, the effectiveness of channel blocking are analyzed and optimal structures of blocker molecules are proposed.
Full Text

About the authors
Yu. N. Vorobjev
Institute of Chemical Biology and Fundamental Medicine, Siberian Branch Russia Academy of Sciences
Author for correspondence.
Email: ynvorob@niboch.nsc.ru
Russian Federation, Novosibirsk, 630090
References
- Rudneva I., Ignatieva A., Timofeeva T., Shilov A., Kushch A., Masalova O., Klimova R., Bovin N., Mochalova L., Kaverin N. (2012) Escape mutants of pandemic influenza A/H1N1 2009 virus: variations in antigenic specificity and receptor affinity of the hemagglutinin. Virus Res. 166, 61–67. doi: 10.1016/j.virusres.2012.03.003
- Wever P.C., Bergen L. (2014) Death from 1918 pandemic influenza during the First World War: a perspective from personal and anecdotal evidence. Influenza Other Respir. Viruses. 8, 538–546. doi: 10.1111/irv.12267
- Ullrich S., Ekanayake K.B., Otting G., Nitsche C. (2022) Main protease mutants of SARS-CoV-2 variants remain susceptible. Bioorg. Med. Chem. Lett. 62, 128629. doi: 10.1016/j.bmcl.2022.12862
- Wang Q., Ye S.B., Zhou Z.J., Song A.L., Zhu X., Peng J.M., Liang R.M., Yang C.H., Yu X.W., Huang X., Yu J., Qiu Y., Ge X.Y. (2022) Key mutations in the spike protein of SARS‐CoV‐2 affecting neutralization resistance and viral internalization. J. Med Virol. 95, e28407. https://doi.org/10.1002/jmv.28407
- Stouffer A.L., Acharya R., Salom D., Levine A.S., Costanzo L.D., Soto C.S., Tereshko V., Nanda V., Stayrook S., DeGrado W.E. (2008) Structural basis for the function and inhibition of an influenza virus proton channel. Nature. 451(7178), 596–599. doi: 10.1038/nature06528
- Vorobjev Y.N. (2021) An effective molecular blocker of ion channel of M2 protein as anti-influenza drug. J. Biomol. Struct. Dynamics. 39(7), 2352–2363. doi.org/10.1080/07391102.2020.1747550
- Mandala V.S., McKay M.J., Shcherbakov A.A., Dregni A.J., Kolocouris A., Hang M. (2022) Structure and drug binding of the SARS-CoV-2 envelope protein transmembrane domain in lipid bilayers. Nat. Struct. Mol. Biol. 27, 1202–1208. doi: 10.1038/s41594-020-00536-8
- Surya W., Li Y., Torres J. (2018) Structural model of the SARS coronavirus E channel in LMPG micelles. Biochim. Biophys. Acta Biomembr. 1860, 1309–1317. doi.org/10.1016/j.bbamem.2018.02.017
- Pinto L.H., Holsinger L.J., Lamb R.A. (1992) Influenza virus M2 protein has ion channel activity. Cell. 69(3), 517–528. doi.org/10.1016/0092-8674(92)90452-I
- Ruch T.R., Machamer C.E. (2011) The hydrophobic domain of infectious bronchitis virus E protein alters the host secretory pathway and is important for release of infectious virus. J. Virol. 85, 675–685. doi: 10.1128/JVI.01570-10
- Nieto-Torres J.L., DeDiego D.I., Verdiá-Báguena C., Jimenez-Guardeño J.M., Regla-Nava J.A., Fernandez-Delgado R., Castaño-Rodriguez C., Alcaraz A., Torres J., Aguilella V.M., Enjuanes L. (2014) Severe acute respiratory syndrome coronavirus envelope protein ion channel activity promotes virus fitness and pathogenesis. PLoS Pathog. 10(5), e1004077. doi: 10.1371/journal.ppat.1004077
- Singh Tomar P.P., Arkin I.T. (2020) SARS-CoV-2 E protein is a potential ion channel that can be inhibited by Gliclazide and Memantine. Biochem. Biophys.Res. Commun. 530, 10–14. doi: 10.1016/j.bbrc.2020.05.206
- Gurumallappa, Arun Renganathan R.R., Hema M.K., Karthik C.S., Rani S., Nethaji M., Jayanth H.S., Mallu P., Lokanath N.K., Ravishankar Rai V. (2021) 4-acetamido-3-nitrobenzoic acid — structural quantum chemical studies, ADMET and molecular docking studies of SARS-CoV2. J. Biomol. Struct. Dynamics. 40(14), 6656–6670. doi: 10.1080/07391102.2021.1889664
- Schoeman D., Fielding B.C. (2019) Coronavirus envelope protein: current knowledge. J. Virol. 16, 69–91. doi: 10.1186/s12985-019-1182-0
- DeDiego M.L., Alvarez E., Almazán F., Rejas M.T., Lamirande E., Roberts A., Shieh W.-J., Zaki S.R., Subbarao K., Enjuanes L. (2007) A severe acute respiratory syndrome coronavirus that lacks the E gene is attenuated in vitro and in vivo. J. Virol. 81, 1701–1713. doi: 10.1128/JVI.01467-06
- Torres J., Maheswari U., Parthasarathy K., Lifang Ng, Liu D.X., Gong X. (2007) Conductance and amantadine binding of a pore formed by a lysine-flanked transmembrane domain of SARS coronavirus envelope protein. Protein Sci. 16, 2065–2071. doi: 10.1110/ps.062730007
- Verdiá-Báguena C., Nieto-Torres J.L., Alcaraz A., DeDiego M.L., Torres J., Aguilella V.M., Enjuanes L. (2012) Coronavirus E protein forms ion channels with functionally and structurally-involved membrane lipids. Virology. 432, 485–494. doi: 10.1016/j.virol.2012.07.005
- Surya W., Li Y., Verdià-Bàguena C., Aguilella V.M., Torres J. (2015) MERS coronavirus envelope protein has a single transmembrane domain that forms pentameric ion channels. Virus Res. 201, 61–66. doi: 10.1016/j.virusres.2015.02.023
- Wilson L., Gage P., Ewart G. (2006) Hexamethylene amiloride blocks E protein ion channels and inhibits coronavirus replication. Virology. 353, 294–306. doi: 10.1016/j.virol.2006.05.028
- To J., Surya W., Fung T.S., Li W., Verdià-Bàguena C., Queralt-Martin M., Aguilella V.M., Liu D.X., Torres J. (2017) Channel-inactivating mutations and their revertant mutants in the envelope protein of infectious bronchitis virus. J. Virol. 91, e02158–16. doi: 10.1128/JVI.02158-16
- Pervushin K., Tan E., Parthasarathy K., Lin X., Jiang F.L., Yu D., Vararattanavech A., Soong T.W., Liu D.X., Torres J. (2009) Structure and inhibition of the SARS coronavirus envelope protein ion channel. PLoS Pathog. 5, e1000511. doi: 10.1371/journal.ppat.1000511
- Torres J., Parthasarathy K., Lin X., Saravanan R., Kukol A., Liu D.X. (2009) Model of a putative pore: the pentameric alpha-helical bundle of SARS coronavirus E protein in lipid bilayers. Biophys. J. 91, 938–947. doi: 10.1529/biophysj.105.080119
- Mandala V.S., McKay M.J., Shcherbakov A.A., Dregni A.J., Kolocouris A., Hong M. (2020) Structure and drug binding of the SARS-CoV-2 envelope protein transmembrane domain in lipid bilayers. Nat. Struct. Mol. Biol. 27, 1202–1208. https://doi.org/10.1038/s41594-020-00536-8
- Parthasarathy K., Ng L., Lin X., Liu D.X., Pervushin K., Gong X., Torres J. (2008) Structural flexibility of the pentameric SARS coronavirus envelope protein ion channel. Biophys. J. 95, L39–L41. doi: 10.1529/biophysj.108.133041
- Hanning Chen, Yujie Wu, Voth G.A. (2007) Proton transport behavior through the influenza A M2 channel: Insights from molecular simulation. Biophys. J. 93, 3470–3479. doi: 10.1529/biophysj.107.105742
- Tang Y., Zaitseva F., Lamb R.A., Pinto L.H. (2002) The gate of the influenza virus M2 proton channel is formed by a single tryptophan residue. J. Biol. Chem. 277, 39880-39886. doi: 10.1074/jbc.M206582200
- Воробьев Ю.Н. (2020) Конструирование эффективного ингибитора ионного канала белка М2 вируса гриппа A. Молекуляр. биология. 54, 321–332.
- Vorobjev Y.N. (2021) Design of effective molecular blocker of e protein channel as anti SARS-CoV-2 virus. Drug Des. 10, 183.
- Vorobjev Y.N. (2022) Molecular blocker of native and mutant E protein ion channel of SARS-CoV-2 virus. Drug Des. 11, 205.
- Попов А.В., Воробьев Ю.Н. (2010) Программа GUI-BioPASED для моделирования молекулярной биополимеров с графическим пользовательским интерфейсом. Молекуляр. биология. 44(4), 735-742.
- Vorobjev Y.N., Almagro J.C., Hermans J. (1998) Discrimination between native and intentionally misfolded conformations of proteins: ES/IS, a new method for calculating conformational free energy that uses both dynamics simulations with an explicit solvent and an implicit solvent continuum model. Proteins. 32, 399–413. https://doi.org/10.1002/(SICI)1097-0134(19980901)32:4<399:: AID-PROT1>3.0.CO;2-C
- Vorobjev Y.N. (2011) Advances in implicit models of water solvent to compute conformational free energy and molecular dynamics of proteins at constant pH. Adv. Protein Chem. Struct. Biol. 85, 281–322. https://doi.org/10.1016/B978-0-12-386485-7.00008-9
- Vorobjev Y.N. (2014) Modeling of Electrostatic Effects in Macromolecules. Ed. Liwo A. In: Computational Methods to Study the Structure and Dynamics of Biomolecules and Biomolecular Processes: From Bioinformatics to Molecular Quantum Mechanics. Springer-Verlag Berlin Haidelberg, 1, pp. 151–194. doi: 10.1007/978-3-642-28554-7_6
- Vorobjev Y.N., Scheraga H.A., Vila J.A. (2018) Coupled molecular dynamics and continuum electrostatic method to compute the ionization pKa’s of proteins as a function of pH. Test on a large set of proteins. J. Biomol. Struct. Dynamics. 563–574. doi: 10.1080/07391102.2017.1288169
- Cornell W.D., Cieplak P., Bayly C.I., Gould I.R., Merz K.M., Ferguson D.M., Spellmeyer D.C., Fox T., Caldwell J.W., Kollman P.A. (1995) A second generation for the simulation of proteins, nucleic acids and organic molecules. J. Am. Chem. Soc. 117, 5179–5197. doi: 10.1021/ja00124a002
- Wang J., Cieplak P., Kollman P.A. (2000) How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? J. Comput. Chem. 21, 1049-1074. doi.org/10.1002/1096-987X(200009)21:12%3C1049:: AID-JCC3%3E3.0.CO;2-F
- Wang J., Wolf R.M., Caldwell J.W., Kollman P.A., Case D.A. (2004) Development and testing of a general amber force fields. J. Comput. Chem. 27, 1157-1174. doi: 10.1002/jcc.20035
- Vorobjev Y.N. (2010) Blind docking method combining search of low-resolution binding sites with ligand pose refinement by molecular dynamics-based global optimization. J. Comp. Chem. 31, 1080–1092. doi: 10.1002/jcc.21394
- Mohga F.M., Youssef A.A.A. (2001) Dielectric permittivity and AC conductivity investigation for the new model lipid bilayer material: (CH2)10 (NH3)2CdCl4 Z. Naturforsch. 56A, 568–578.
- Vorobjev Y.N., Hermans J. (1997) SIMS, computation of a smooth invariant molecular surface. Biophysical J. 73, 722–732. doi: 10.1016/S0006-3495(97)78105-0
- Löffler G., Schreiber H. (1997) The frequency-dependent conductivity of a saturated solution of ZnBr2 in water: A molecular dynamics simulation. J. Chem. Phys.107, 3135–3143. doi.org/10.1063/1.474703
- Li C., Li L., Zhang J., Alexov E. (2012) Highly efficient and exact method for parallelization of grid-based algorithms and its implementation in DelPhi. J. Comput. Chem. 33, 1960–1966. doi: 10.1002/jcc.23033
- Li L., Li C., Zhang Z., Alexov E. (2013) On the dielectric “Constant” of proteins: smooth dielectric function for macromolecular modeling and its implementation in DelPhi. J. Chem. Theory Comput. 9, 2126–2136. https://doi.org/10.1021/ct400065j
- Moffat J.S., Vijayvergiya V., Gao P.F., Cross T.A., Woodbury D.J., Busath D.D. (2008) Proton transport through influenza A virus M2 protein reconstituted in vesicles. Biophys. J. 94, 434–445. doi: 10.1529/biophysj.107.109082
- Hari Z.S., Moorthy N., Poongavanam V., Pratheepa V. (2014) Viral M2 Ion channel protein: a promising target for anti-influenza drug discovery. Med. Chem. 14, 819–830. doi: 10.2174/138955751410141020150822
- Olsen R.W. (2006) Picrotoxin-like channel blockers of GABAA receptors. Proc. Nat. Acad. Sci. USA. 103, 6081-6082. www.pnas.org/cgi/doi/10.1073/pnas.060112110
- Thomaston J.L., Polizzi N.F., Konstantinidi A., Wang J., Kolocouris A., DeGrado W.F. (2018) Inhibitors of the M2 proton channel engage and disrupt transmembrane networks of hydrogen-bonded waters. J. Am. Chem. Soc. 140, 15219–15226. doi: 10.1021/jacs.8b06741
- Mustafa M., Henderson D.J., Busath D.D. (2009) Free-energy profiles for ions in the influenz M2-TMD channel. Proteins. 76, 794–807. doi: 10.1002/prot.22376
- Homeyer N., Ioannidis H., Kolarov F., Gauglitz G., Zikos C., Kolocouris A., Gohlke H. (2016) interpreting thermodynamic profiles of aminoadamantane compounds inhibiting the m2 proton channel of influenza A by free energy calculations. J. Chem. Inf. Model. 56, 110–126. doi: 10.1021/acs.jcim.5b00467
- Holsinger L.J., Nichani D., Pinto L.H., Lamb R.A. (1994) Influenza A virus M2 ion channel protein: a structure-function analysis. J. Virol. 68, 1551–1563. doi: 10.1128/jvi.68.3.1551-1563.1994
- Wang J., Kim S., Kovacs F., Cross T.A. (2001) Structure of the trans membrane region of the M2 protein H+ channel. Protein Sci. 10, 2241–2250. doi: 11.1110/ps.17901
- Cady S.D., Mishanina T.V., Hong M. (2009) Structure of amantadine-bound M2 transmembrane peptide of influenza A in lipid bilayers from magic-angle-spinning solid-state NMR: the role of Ser31 in amantadine bind-ing. J. Mol. Biol. 385, 1127–1141. doi.org/10.1016/j.jmb.2008.11.022
- Cady S.D., Schmidt-Rohr K., Wang J., Soto C.S., Degrado W.F., Hong M. (2010) Structure of the amanta-dine binding site of influenza M2 proton channels in lipid bilayers. Nature. 463, 689–692.https://doi.org/10.1038/nature08722
- Hong M., DeGrado W.F. (2012) Structural basis for proton conduction and inhibitio by the influenza M2 protein. Protein Sci. 21, 1620–1633. doi: 10.1002/pro.2158
- PAM1 Mutation Matrix (1978) Atlas of protein sequence and structure. 5(Suppl. 3). http://profs.scienze.univr.it/~liptak/ACB/files/PAMMutationMatrices.pdf
Supplementary files
