Molecular Ion Channel Blockers of Influenza A and SARS-CoV-2 Viruses

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Drug molecules that block the functional cycle of influenza A and SARS-CoV-2 viruses are proposed. The blocker molecules effectively binding inside the M2 and E-channels of influenza A and SARS-CoV-2 viruses and blocking the diffusion of H+/K+ ions destroy the functional cycle of viruses. A family of positively charged, +2 e. u., molecular blockers of H+ /K+ ion diffusion through M2 and E-channels is proposed. The blocker molecules, derivatives of diazabicyclooctane, was investigated for its binding affinity to the channels M2 and E. Thermal dynamics and binding affinity were modeled by the exhaustive docking method sites. Blocker molecules with higher affinity for the blocking sites were proposed. The most probable mutations of amino acids of protein M2 and E channels are considered, the effectiveness of channel blocking are analyzed and optimal structures of blocker molecules are proposed.

Full Text

Restricted Access

About the authors

Yu. N. Vorobjev

Institute of Chemical Biology and Fundamental Medicine, Siberian Branch Russia Academy of Sciences

Author for correspondence.
Email: ynvorob@niboch.nsc.ru
Russian Federation, Novosibirsk, 630090

References

  1. Rudneva I., Ignatieva A., Timofeeva T., Shilov A., Kushch A., Masalova O., Klimova R., Bovin N., Mochalova L., Kaverin N. (2012) Escape mutants of pandemic influenza A/H1N1 2009 virus: variations in antigenic specificity and receptor affinity of the hemagglutinin. Virus Res. 166, 61–67. doi: 10.1016/j.virusres.2012.03.003
  2. Wever P.C., Bergen L. (2014) Death from 1918 pandemic influenza during the First World War: a perspective from personal and anecdotal evidence. Influenza Other Respir. Viruses. 8, 538–546. doi: 10.1111/irv.12267
  3. Ullrich S., Ekanayake K.B., Otting G., Nitsche C. (2022) Main protease mutants of SARS-CoV-2 variants remain susceptible. Bioorg. Med. Chem. Lett. 62, 128629. doi: 10.1016/j.bmcl.2022.12862
  4. Wang Q., Ye S.B., Zhou Z.J., Song A.L., Zhu X., Peng J.M., Liang R.M., Yang C.H., Yu X.W., Huang X., Yu J., Qiu Y., Ge X.Y. (2022) Key mutations in the spike protein of SARS‐CoV‐2 affecting neutralization resistance and viral internalization. J. Med Virol. 95, e28407. https://doi.org/10.1002/jmv.28407
  5. Stouffer A.L., Acharya R., Salom D., Levine A.S., Costanzo L.D., Soto C.S., Tereshko V., Nanda V., Stayrook S., DeGrado W.E. (2008) Structural basis for the function and inhibition of an influenza virus proton channel. Nature. 451(7178), 596–599. doi: 10.1038/nature06528
  6. Vorobjev Y.N. (2021) An effective molecular blocker of ion channel of M2 protein as anti-influenza drug. J. Biomol. Struct. Dynamics. 39(7), 2352–2363. doi.org/10.1080/07391102.2020.1747550
  7. Mandala V.S., McKay M.J., Shcherbakov A.A., Dregni A.J., Kolocouris A., Hang M. (2022) Structure and drug binding of the SARS-CoV-2 envelope protein transmembrane domain in lipid bilayers. Nat. Struct. Mol. Biol. 27, 1202–1208. doi: 10.1038/s41594-020-00536-8
  8. Surya W., Li Y., Torres J. (2018) Structural model of the SARS coronavirus E channel in LMPG micelles. Biochim. Biophys. Acta Biomembr. 1860, 1309–1317. doi.org/10.1016/j.bbamem.2018.02.017
  9. Pinto L.H., Holsinger L.J., Lamb R.A. (1992) Influenza virus M2 protein has ion channel activity. Cell. 69(3), 517–528. doi.org/10.1016/0092-8674(92)90452-I
  10. Ruch T.R., Machamer C.E. (2011) The hydrophobic domain of infectious bronchitis virus E protein alters the host secretory pathway and is important for release of infectious virus. J. Virol. 85, 675–685. doi: 10.1128/JVI.01570-10
  11. Nieto-Torres J.L., DeDiego D.I., Verdiá-Báguena C., Jimenez-Guardeño J.M., Regla-Nava J.A., Fernandez-Delgado R., Castaño-Rodriguez C., Alcaraz A., Torres J., Aguilella V.M., Enjuanes L. (2014) Severe acute respiratory syndrome coronavirus envelope protein ion channel activity promotes virus fitness and pathogenesis. PLoS Pathog. 10(5), e1004077. doi: 10.1371/journal.ppat.1004077
  12. Singh Tomar P.P., Arkin I.T. (2020) SARS-CoV-2 E protein is a potential ion channel that can be inhibited by Gliclazide and Memantine. Biochem. Biophys.Res. Commun. 530, 10–14. doi: 10.1016/j.bbrc.2020.05.206
  13. Gurumallappa, Arun Renganathan R.R., Hema M.K., Karthik C.S., Rani S., Nethaji M., Jayanth H.S., Mallu P., Lokanath N.K., Ravishankar Rai V. (2021) 4-acetamido-3-nitrobenzoic acid — structural quantum chemical studies, ADMET and molecular docking studies of SARS-CoV2. J. Biomol. Struct. Dynamics. 40(14), 6656–6670. doi: 10.1080/07391102.2021.1889664
  14. Schoeman D., Fielding B.C. (2019) Coronavirus envelope protein: current knowledge. J. Virol. 16, 69–91. doi: 10.1186/s12985-019-1182-0
  15. DeDiego M.L., Alvarez E., Almazán F., Rejas M.T., Lamirande E., Roberts A., Shieh W.-J., Zaki S.R., Subbarao K., Enjuanes L. (2007) A severe acute respiratory syndrome coronavirus that lacks the E gene is attenuated in vitro and in vivo. J. Virol. 81, 1701–1713. doi: 10.1128/JVI.01467-06
  16. Torres J., Maheswari U., Parthasarathy K., Lifang Ng, Liu D.X., Gong X. (2007) Conductance and amantadine binding of a pore formed by a lysine-flanked transmembrane domain of SARS coronavirus envelope protein. Protein Sci. 16, 2065–2071. doi: 10.1110/ps.062730007
  17. Verdiá-Báguena C., Nieto-Torres J.L., Alcaraz A., DeDiego M.L., Torres J., Aguilella V.M., Enjuanes L. (2012) Coronavirus E protein forms ion channels with functionally and structurally-involved membrane lipids. Virology. 432, 485–494. doi: 10.1016/j.virol.2012.07.005
  18. Surya W., Li Y., Verdià-Bàguena C., Aguilella V.M., Torres J. (2015) MERS coronavirus envelope protein has a single transmembrane domain that forms pentameric ion channels. Virus Res. 201, 61–66. doi: 10.1016/j.virusres.2015.02.023
  19. Wilson L., Gage P., Ewart G. (2006) Hexamethylene amiloride blocks E protein ion channels and inhibits coronavirus replication. Virology. 353, 294–306. doi: 10.1016/j.virol.2006.05.028
  20. To J., Surya W., Fung T.S., Li W., Verdià-Bàguena C., Queralt-Martin M., Aguilella V.M., Liu D.X., Torres J. (2017) Channel-inactivating mutations and their revertant mutants in the envelope protein of infectious bronchitis virus. J. Virol. 91, e02158–16. doi: 10.1128/JVI.02158-16
  21. Pervushin K., Tan E., Parthasarathy K., Lin X., Jiang F.L., Yu D., Vararattanavech A., Soong T.W., Liu D.X., Torres J. (2009) Structure and inhibition of the SARS coronavirus envelope protein ion channel. PLoS Pathog. 5, e1000511. doi: 10.1371/journal.ppat.1000511
  22. Torres J., Parthasarathy K., Lin X., Saravanan R., Kukol A., Liu D.X. (2009) Model of a putative pore: the pentameric alpha-helical bundle of SARS coronavirus E protein in lipid bilayers. Biophys. J. 91, 938–947. doi: 10.1529/biophysj.105.080119
  23. Mandala V.S., McKay M.J., Shcherbakov A.A., Dregni A.J., Kolocouris A., Hong M. (2020) Structure and drug binding of the SARS-CoV-2 envelope protein transmembrane domain in lipid bilayers. Nat. Struct. Mol. Biol. 27, 1202–1208. https://doi.org/10.1038/s41594-020-00536-8
  24. Parthasarathy K., Ng L., Lin X., Liu D.X., Pervushin K., Gong X., Torres J. (2008) Structural flexibility of the pentameric SARS coronavirus envelope protein ion channel. Biophys. J. 95, L39–L41. doi: 10.1529/biophysj.108.133041
  25. Hanning Chen, Yujie Wu, Voth G.A. (2007) Proton transport behavior through the influenza A M2 channel: Insights from molecular simulation. Biophys. J. 93, 3470–3479. doi: 10.1529/biophysj.107.105742
  26. Tang Y., Zaitseva F., Lamb R.A., Pinto L.H. (2002) The gate of the influenza virus M2 proton channel is formed by a single tryptophan residue. J. Biol. Chem. 277, 39880-39886. doi: 10.1074/jbc.M206582200
  27. Воробьев Ю.Н. (2020) Конструирование эффективного ингибитора ионного канала белка М2 вируса гриппа A. Молекуляр. биология. 54, 321–332.
  28. Vorobjev Y.N. (2021) Design of effective molecular blocker of e protein channel as anti SARS-CoV-2 virus. Drug Des. 10, 183.
  29. Vorobjev Y.N. (2022) Molecular blocker of native and mutant E protein ion channel of SARS-CoV-2 virus. Drug Des. 11, 205.
  30. Попов А.В., Воробьев Ю.Н. (2010) Программа GUI-BioPASED для моделирования молекулярной биополимеров с графическим пользовательским интерфейсом. Молекуляр. биология. 44(4), 735-742.
  31. Vorobjev Y.N., Almagro J.C., Hermans J. (1998) Discrimination between native and intentionally misfolded conformations of proteins: ES/IS, a new method for calculating conformational free energy that uses both dynamics simulations with an explicit solvent and an implicit solvent continuum model. Proteins. 32, 399–413. https://doi.org/10.1002/(SICI)1097-0134(19980901)32:4<399:: AID-PROT1>3.0.CO;2-C
  32. Vorobjev Y.N. (2011) Advances in implicit models of water solvent to compute conformational free energy and molecular dynamics of proteins at constant pH. Adv. Protein Chem. Struct. Biol. 85, 281–322. https://doi.org/10.1016/B978-0-12-386485-7.00008-9
  33. Vorobjev Y.N. (2014) Modeling of Electrostatic Effects in Macromolecules. Ed. Liwo A. In: Computational Methods to Study the Structure and Dynamics of Biomolecules and Biomolecular Processes: From Bioinformatics to Molecular Quantum Mechanics. Springer-Verlag Berlin Haidelberg, 1, pp. 151–194. doi: 10.1007/978-3-642-28554-7_6
  34. Vorobjev Y.N., Scheraga H.A., Vila J.A. (2018) Coupled molecular dynamics and continuum electrostatic method to compute the ionization pKa’s of proteins as a function of pH. Test on a large set of proteins. J. Biomol. Struct. Dynamics. 563–574. doi: 10.1080/07391102.2017.1288169
  35. Cornell W.D., Cieplak P., Bayly C.I., Gould I.R., Merz K.M., Ferguson D.M., Spellmeyer D.C., Fox T., Caldwell J.W., Kollman P.A. (1995) A second generation for the simulation of proteins, nucleic acids and organic molecules. J. Am. Chem. Soc. 117, 5179–5197. doi: 10.1021/ja00124a002
  36. Wang J., Cieplak P., Kollman P.A. (2000) How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? J. Comput. Chem. 21, 1049-1074. doi.org/10.1002/1096-987X(200009)21:12%3C1049:: AID-JCC3%3E3.0.CO;2-F
  37. Wang J., Wolf R.M., Caldwell J.W., Kollman P.A., Case D.A. (2004) Development and testing of a general amber force fields. J. Comput. Chem. 27, 1157-1174. doi: 10.1002/jcc.20035
  38. Vorobjev Y.N. (2010) Blind docking method combining search of low-resolution binding sites with ligand pose refinement by molecular dynamics-based global optimization. J. Comp. Chem. 31, 1080–1092. doi: 10.1002/jcc.21394
  39. Mohga F.M., Youssef A.A.A. (2001) Dielectric permittivity and AC conductivity investigation for the new model lipid bilayer material: (CH2)10 (NH3)2CdCl4 Z. Naturforsch. 56A, 568–578.
  40. Vorobjev Y.N., Hermans J. (1997) SIMS, computation of a smooth invariant molecular surface. Biophysical J. 73, 722–732. doi: 10.1016/S0006-3495(97)78105-0
  41. Löffler G., Schreiber H. (1997) The frequency-dependent conductivity of a saturated solution of ZnBr2 in water: A molecular dynamics simulation. J. Chem. Phys.107, 3135–3143. doi.org/10.1063/1.474703
  42. Li C., Li L., Zhang J., Alexov E. (2012) Highly efficient and exact method for parallelization of grid-based algorithms and its implementation in DelPhi. J. Comput. Chem. 33, 1960–1966. doi: 10.1002/jcc.23033
  43. Li L., Li C., Zhang Z., Alexov E. (2013) On the dielectric “Constant” of proteins: smooth dielectric function for macromolecular modeling and its implementation in DelPhi. J. Chem. Theory Comput. 9, 2126–2136. https://doi.org/10.1021/ct400065j
  44. Moffat J.S., Vijayvergiya V., Gao P.F., Cross T.A., Woodbury D.J., Busath D.D. (2008) Proton transport through influenza A virus M2 protein reconstituted in vesicles. Biophys. J. 94, 434–445. doi: 10.1529/biophysj.107.109082
  45. Hari Z.S., Moorthy N., Poongavanam V., Pratheepa V. (2014) Viral M2 Ion channel protein: a promising target for anti-influenza drug discovery. Med. Chem. 14, 819–830. doi: 10.2174/138955751410141020150822
  46. Olsen R.W. (2006) Picrotoxin-like channel blockers of GABAA receptors. Proc. Nat. Acad. Sci. USA. 103, 6081-6082. www.pnas.org/cgi/doi/10.1073/pnas.060112110
  47. Thomaston J.L., Polizzi N.F., Konstantinidi A., Wang J., Kolocouris A., DeGrado W.F. (2018) Inhibitors of the M2 proton channel engage and disrupt transmembrane networks of hydrogen-bonded waters. J. Am. Chem. Soc. 140, 15219–15226. doi: 10.1021/jacs.8b06741
  48. Mustafa M., Henderson D.J., Busath D.D. (2009) Free-energy profiles for ions in the influenz M2-TMD channel. Proteins. 76, 794–807. doi: 10.1002/prot.22376
  49. Homeyer N., Ioannidis H., Kolarov F., Gauglitz G., Zikos C., Kolocouris A., Gohlke H. (2016) interpreting thermodynamic profiles of aminoadamantane compounds inhibiting the m2 proton channel of influenza A by free energy calculations. J. Chem. Inf. Model. 56, 110–126. doi: 10.1021/acs.jcim.5b00467
  50. Holsinger L.J., Nichani D., Pinto L.H., Lamb R.A. (1994) Influenza A virus M2 ion channel protein: a structure-function analysis. J. Virol. 68, 1551–1563. doi: 10.1128/jvi.68.3.1551-1563.1994
  51. Wang J., Kim S., Kovacs F., Cross T.A. (2001) Structure of the trans membrane region of the M2 protein H+ channel. Protein Sci. 10, 2241–2250. doi: 11.1110/ps.17901
  52. Cady S.D., Mishanina T.V., Hong M. (2009) Structure of amantadine-bound M2 transmembrane peptide of influenza A in lipid bilayers from magic-angle-spinning solid-state NMR: the role of Ser31 in amantadine bind-ing. J. Mol. Biol. 385, 1127–1141. doi.org/10.1016/j.jmb.2008.11.022
  53. Cady S.D., Schmidt-Rohr K., Wang J., Soto C.S., Degrado W.F., Hong M. (2010) Structure of the amanta-dine binding site of influenza M2 proton channels in lipid bilayers. Nature. 463, 689–692.https://doi.org/10.1038/nature08722
  54. Hong M., DeGrado W.F. (2012) Structural basis for proton conduction and inhibitio by the influenza M2 protein. Protein Sci. 21, 1620–1633. doi: 10.1002/pro.2158
  55. PAM1 Mutation Matrix (1978) Atlas of protein sequence and structure. 5(Suppl. 3). http://profs.scienze.univr.it/~liptak/ACB/files/PAMMutationMatrices.pdf

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Structure of molecules of E- and M2-channel blockers. a – DABCO; b – DABCOB; c – DABCO3B; g – DABCON; d – DABCO3N.

Download (319KB)
3. Fig. 2. Ionized HIS+ fraction of histidine residues (a) and fraction of neutral tautomer HIE (b). His37A (black), His37B (red), His37C (blue), HIS37D (green), protein M2 at pH 6.5, T = 300 K, along the equilibrium MD trajectory in 25 ns.

Download (368KB)
4. Fig. 3. The main binding site of DABCOB molecules with the native M2 channel.

Download (79KB)
5. Fig. 4. Fluctuations of potential energy of native and mutant structures of the E-channel at T= 308K, pH 6.5; black – native structure, red – mut1, green – mut2.

Download (213KB)
6. Fig. 5. Structure of the most probable, highest binding energy, complexes of the native E-channel with optimally bound blocker molecules: DABCO (a); DABCOB (b); DABCO3B (c); DABCON (d); DABCO3N (d).

Download (823KB)
7. Fig. 6. Structure of the most probable complexes of the mutant, mut1, E-channel with optimally bound blocker molecules: DABCO (a), DABCOB (b), DABCO3B (c), DABCON (d), DABCO3N (d).

Download (946KB)
8. Fig. 7. Structure of the most probable complexes of the E channel mutant, mut2, with blocker molecules: (a) DABCO; (b) DABCOB; (c) DABCO3B; (d) DABCON; (d) DABCO3N.

Download (1MB)

Copyright (c) 2024 Russian Academy of Sciences