ArdA Protein Specificity to Type I Restriction–Modification Systems

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

ArdA are DNA-mimic proteins which inhibit type I restriction-modification (RMI) systems by binding to them instead of DNA. The question of specificity to DNA methylation sites recognized by RMI complexes remains to be answered: is ArdA able to mimic a specific DNA site? In this work, we cloned ardA genes from three Gram-positive bacteria Agrobacterium tumefaciens, Pseudomonas monteilii and Xanthomonas sp. Antirestriction abilities of these genes were tested against three RMI systems of Escherichia coli, differing in DNA recognition/methylation sites. It was shown that despite the similarity of predicted structures of the studied ArdA proteins, they have significant specificity for three RMI systems. The results obtained may indicate the ability of DNA-mimetics to imitate specific DNA sites.

Full Text

Restricted Access

About the authors

A. A. Kudryavtseva

Moscow Institute of Physics and Technology (National Research University)

Email: manukhovi@mail.ru
Russian Federation, Dolgoprudny, Moscow Region, 141707

A. V. Vlasov

Moscow Institute of Physics and Technology (National Research University); RussianBiotechnological University (ROSBIOTECH); Joint Institute for Nuclear Research

Email: manukhovi@mail.ru
Russian Federation, Dolgoprudny, Moscow Region, 141707; Moscow, 125080; Dubna, 141980

E. V. Zinovev

Moscow Institute of Physics and Technology (National Research University)

Email: manukhovi@mail.ru
Russian Federation, Dolgoprudny, Moscow Region, 141707

D. D. Yanovskaya

Skolkovo Institute of Science and Technology

Email: manukhovi@mail.ru
Russian Federation, Moscow, 143028

A. A. Utkina

Moscow Institute of Physics and Technology (National Research University)

Email: manukhovi@mail.ru
Russian Federation, Dolgoprudny, Moscow Region, 141707

S. M. Rastorguev

Pirogov Russian National Research Medical University

Email: manukhovi@mail.ru
Russian Federation, Moscow, 117997

I. V. Manukhov

Moscow Institute of Physics and Technology (National Research University); RussianBiotechnological University (ROSBIOTECH)

Author for correspondence.
Email: manukhovi@mail.ru
Russian Federation, Dolgoprudny, Moscow Region, 141707; Moscow, 125080

References

  1. Завильгельскй Г.Б., Расторгуев С.М. (2007) ДНК-мимикрия белков как эффективный механизм регуляции активности ДНК-зависимых ферментов. Биохимия. 72(9), 1125–1132.
  2. Котова В.Ю., Завильгельский Г.Б., Белогуров А.А. (1988) Ослабление рестрикции 1-го типа в присутствии плазмид группы IncI. Общая характеристика и молекулярное клонирование гена ard. Молекуляр. биология. 22(1), 270–276.
  3. McMahon S.A., Roberts G.A., Johnson K.A., Cooper L.P., Liu H., White J.H., Carter L.G., Sanghvi B., Oke M., Walkinshaw M.D., Blakely G.W., Naismith J.H., Dryden D.T.F. (2009) Extensive DNA mimicry by the ArdA anti-restriction protein and its role in the spread of antibiotic resistance. Nucl. Acids Res 37(15), 4887–4897.
  4. Roberts G.A., Stephanou A.S., Kanwar N., Dawson A., Cooper L.P., Chen K., Nutley M., Cooper A., Blakely G.W., Dryden D.T.F. (2012) Exploring the DNA mimicry of the Ocr protein of phage T7. Nucl. Acids Res 40(16), 8129–8143.
  5. Завильгельский Г.Б., Котова В.Ю. (2014) Антирестрикционная активность мономерной и димерной форм белка Ocr T7. Молекуляр. биология. 48(1), 176–184.
  6. Расторгуев С.М., Завильгельский Г.Б. (2003) Роль антирестрикционного мотива в функциональной активности антирестрикционного белка ArdA pKM101 (IncN). Генетика. 39(2), 286–292).
  7. Stephanou A.S., Roberts G.A., Tock M.R., Pritchard E.H., Turkington R., Nutley M., Cooper A., Dryden D.T.F. (2009) A mutational analysis of DNA mimicry by ocr, the gene 0.3 antirestriction protein of bacteriophage T7. Biochem. Biophys. Res. Commun. 378(1), 129–132.
  8. Belogurov A.A., Yussifov T.N., Kotova V.U., Zavilgelsky G.B. (1985) The novel gene(s) ARD of plasmid pKM101: alleviation of EcoK restriction. MGG Mol. Gen. Genet. 198, 509–513.
  9. Gladysheva-Azgari M.V., Sharko F.S., Evteeva M.A., Kuvyrchenkova A.P., Boulygina E.S., Tsygankova S.V., Slobodova N.V., Pustovoit K.S., Melkina O.E., Nedoluzhko A.V., Korzhenkov A.A., Kudryavtseva A.A., Utkina A.A., Manukhov I.V., Rastorguev S.M., Zavilgelsky G.B. (2023) ArdA genes from pKM101 and from B. bifidum chromosome have a different range of regulated genes. Heliyon. 9(12), e22986.
  10. Kudryavtseva A.A., Cséfalvay E., Gnuchikh E.Y., Yanovskaya D.D., Skutel M.A., Isaev A.B., Bazhenov S.V., Utkina A.A., Manukhov I.V. (2023) Broadness and specificity: ArdB, ArdA, and Ocr against various restriction-modification systems. Front. Microbiol. 14, 1133144. https://doi.org/10.3389/fmicb.2023.1133144
  11. Кудрявцева А.А., Алехин В.А., Лебедева М.Д., Csefalvay E., Weiserova M., Манухов И.В. (2023) Активность антирестрикционного белка ArdB в отношении эндонуклеазы EcoAI 2023. Молекуляр. биология. 57(1), 101–105.
  12. Patel J., Taylor I., Dutta C.F., Kneale G., Firman K. (1992) High-level expression of the cloned genes encoding the subunits of and intact DNA methyltransferase, MEcoR124. Gene. 112(1), 21–27.
  13. Mirdita M., Schütze K., Moriwaki Y., Heo L., Ovchinnikov S., Steinegger M. (2022) ColabFold: making protein folding accessible to all. Nat. Meth. 19(6), 679–682.
  14. Jumper J., Evans R., Pritzel A., Green T., Figurnov M., Ronneberger O., Tunyasuvunakool K., Bates R., Žídek A., Potapenko A., Bridgland A., Meyer C., Kohl S.A.A., Ballard A.J., Cowie A., Romera-Paredes B., Nikolov S., Jain R., Adler J., Back T., Petersen S., Reiman D., Clancy E., Zielinski M., Steinegger M., Pacholska M., Berghammer T., Bodenstein S., Silver D., Vinyals O., Senior A.W., Kavukcuoglu K., Kohli P., Hassabis D. (2021) Highly accurate protein structure prediction with AlphaFold. Nature. 596(7873), 583–589.
  15. Evans R., O’Neill M., Pritzel A., Antropova N., Senior A., Green T., Žídek A., Bates R., Blackwell S., Yim J., Ronneberger O., Bodenstein S., Zielinski M., Bridgland A., Potapenko A., Cowie A., Tunyasuvunakool K., Jain R., Clancy E., Kohli P., Jumper J., Hassabis D. (2022) Protein complex prediction with AlphaFold-Multimer. bioRxiv. https://doi.org/10.1101/2021.10.04.463034
  16. Belogurov A.A., Delver E.P., Rodzevich O.V. (1993) Plasmid pKM101 encodes two nonhomologous antirestriction proteins (ArdA and ArdB) whose expression is controlled by homologous regulatory sequences. J. Bacteriol. 175(15), 4843–4850.
  17. Price C., Lingner J., Bickle T.A., Firman K., Glover S.W. (1989) Basis for changes in DNA recognition by the EcoR124 and EcoR124 3 type I DNA restriction and modification enzymes. J. Mol. Biol. 205, 115–125.
  18. Skutel M., Andriianov A., Zavialova M., Kirsanova M., Shodunke O., Zorin E., Golovshchinskii A., Severinov K., Isaev A. (2023) T5-like phage BF23 evades host-mediated DNA restriction and methylation. microLife. 4, uqad044.
  19. Liu Y.P., Tang Q., Zhang J.Z., Tian L.F., Gao P., Yan X.X. (2017) Structural basis underlying complex assembly and conformational transition of the type I R-M system. Proc. Natl. Acad. Sci. USA. 114(42), 11151–11156.
  20. Mol C.D., Arvai A.S., Sanderson R.J., Slupphaug G., Kavli B., Krokan H.E., Mosbaugh D.W., Tainer J.A. (1995) Crystal structure of human uracil-DNA glycosylase in complex with a protein inhibitor: protein mimicry of DNA. Cell. 82(5), 701–708.
  21. Ramirez B.E., Bax A., Voloshin O.N., Camerini-Otero R.D. (2000) Solution structure of DinI provides insight into its mode of RecA inactivation. Protein Sci. 9(11), 2161–2169.
  22. Parsons L.M., Liu F., Orban J. (2009) HU-α binds to the putative double-stranded DNA mimic HI1450 from Haemophilus influenzae. Protein Sci. 14(6), 1684–1687.
  23. Belogurov A.A., Delver E.P., Rodzevich O.V. (1992) IncN plasmid pKM101 and IncI1 plasmid ColIb-P9 encode homologous antirestriction proteins in their leading regions. J. Bacteriol. 174(15), 5079–5085.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure S1. Supplementary material to the article
Download (361KB)
3. Fig. 1. Alignment of amino acid sequences encoded by the ardA genes of the conjugative plasmid pKM101, transposon Tn916, A. tumefaciens, P. monteilii and Xanthomonas sp. (-) – absence of homologous amino acid, Cov value shows the percentage coverage of each sequence, pid – content (%) of identical amino acids.

Download (64KB)
4. Fig. 2. Alignment of ArdA protein structures with the known structure of ArdA Tn916 (PDB2W82) using PMOL v.1.9. a – Alignment of ArdA_At with ArdA_Tn916. b – Alignment of ArdA_Pm with ArdA_Tn916. c – Alignment of ArdA_Xs with ArdA_Tn916.

Download (26KB)
5. Fig. 3. Efficiency of seeding of unmodified λо phage on E. coli TG1 cells containing plasmids carrying restriction genes and restriction and antirestriction genes: EcoKI-pACYCEcoKI; EcoKI + ardA_At – pACYCEcoKI, pArdA_At; EcoKI + ardA_Pm – pACYCEcoKI, pArdA_Pm; EcoKI + ardA_Xs – pACYCEcoKI, pArdA_Xs; EcoAI – pAM35; EcoAI + ardA_At – pAM35, pArdA_At; EcoAI + ardA_Pm – pAM35, pArdA_Pm; EcoAI + ardA_Xs – pAM35, pArdA_Xs; EcoR124II – pKF650; EcoR124II + ardA_At – pKF650 + pArdA_At; EcoR124II + ardA_Pm – pKF650 + pArdA_Pm; EcoR124II + ardA_Xs – pKF650 + pArdA_Xs.

Download (19KB)
6. Fig. 4. Efficiency of seeding of unmodified λо phage on E. coli TG1 cells containing plasmids carrying restriction genes and restriction and antirestriction genes: EcoR124I – pEcoR124I; EcoR124I + ardA_At – pEcoR124I + pArdA_At; EcoR124I + ardA_Pm – pEcoR124I + pArdA_Pm; EcoR124I + ardA_Xs – pEcoR124I + pArdA_Xs EcoR124II – pKF650; EcoR124II + ardA_At – pKF650 + pArdA_At; EcoR124II + ardA_Pm – pKF650 + pArdA_Pm; EcoR124II + ardA_Xs – pKF650 + pArdA_Xs.

Download (18KB)
7. Fig. 5. Alignment of the structure of the EcoKI S-subunit complex with the ArdA_Xs dimer with the PDB structure (5YBB): the EcoKI S-subunit complex bound to a DNA fragment. a – General view of the alignment (ArdA_Xs are shown in green; S-subunit of EcoKI obtained in AlphaFold is shown in cream; S-subunit of EcoKI from PDB (5YBB) is shown in gray). b – Possible scheme of protein-protein contacts of ArdA_Xs and the S-subunit of the EcoKI complex in comparison with the PDB structure of the protein-DNA complex. c – The same contacts of ArdA_Xs and the S-subunit of EcoKI (modeled in AlphaFold) without superposition of the PDB structure of the protein-DNA complex. d – Putative scheme of protein-protein contacts of ArdA_Xs and the S-subunit of the EcoKI complex on another, symmetrical, region of the S-subunit.

Download (70KB)

Copyright (c) 2024 Russian Academy of Sciences