Knockout of Hsp70 genes modulates age-related transcriptomic changes in leg muscles, reduces locomotion speed and lifespan of Drosophila melanogaster

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The study investigated the effect of knockout of six Hsp70 genes (orthologues of the mammalian genes Hspa1a, Hspa1b, Hspa2 and Hspa8) on age-related changes in gene expression in the legs of Drosophila melanogaster, which contain predominantly skeletal muscle bundles. For this, the leg transcriptomic profile was examined in males of the w1118 control line and the Hsp70 line on the 7th, 23rd and 47th days of life. In w1118 flies, an age-related decrease in the locomotion (climbing) speed (a marker of functional state and endurance) was accompanied by a pronounced change in the transcriptomic profile of the leg skeletal muscles, which is conservative in nature. In Hsp70 flies, the median lifespan was shorter and the locomotion speed was significantly lower compare to the control; at the same time, complex changes in the age-related dynamics of the skeletal muscle transcriptome were observed. Mass spectrometry-based quantitative proteomic showed that 47-day-old Hsp70 flies, compared with w1118, demonstrated multidirectional changes in the content of key enzymes of glucose metabolism and fat oxidation (glycolysis, pentose phosphate pathway, Krebs cycle, beta-oxidation and oxidative phosphorylation). Such dysregulation may be associated with a compensatory increase in the expression of other genes encoding chaperones (small Hsp, Hsp40, 60, and 70), which regulate specific sets of target proteins. Taken together, our data show that knockout of six Hsp70 genes slightly reduces the median lifespan of flies, but significantly reduces the locomotion speed, which may be associated with complex changes in the transcriptome of the leg skeletal muscles and with multidirectional changes in the content of key enzymes of energy metabolism.

Full Text

Restricted Access

About the authors

I. V. Kukushkina

Institute of Biomedical Problems, Russian Academy of Sciences; Lomonosov Moscow State University

Email: danil-popov@yandex.ru

Биологический факультет, Московский государственный университет им. М.В. Ломоносова

Russian Federation, Moscow, 123007; Moscow, 119234

P. A. Makhnovskii

Institute of Biomedical Problems, Russian Academy of Sciences

Email: danil-popov@yandex.ru
Russian Federation, Moscow, 123007

V. G. Zgoda

Orekhovich Research Institute of Biomedical Chemistry

Email: danil-popov@yandex.ru
Russian Federation, Moscow, 119121

N. S. Kurochkina

Institute of Biomedical Problems, Russian Academy of Sciences

Email: danil-popov@yandex.ru
Russian Federation, Moscow, 123007

D. V. Popov

Institute of Biomedical Problems, Russian Academy of Sciences

Author for correspondence.
Email: danil-popov@yandex.ru
Russian Federation, Moscow, 123007

References

  1. Furrer R., Handschin C. (2023) Drugs, clocks and exercise in ageing: hype and hope, fact and fiction. J. Physiol. 601, 2057–2068.
  2. Karakelides H., Irving B.A., Short K.R., O’Brien P., Nair K.S. (2010) Age, obesity, and sex effects on insulin sensitivity and skeletal muscle mitochondrial function. Diabetes. 59, 89–97.
  3. Cervenka I., Agudelo L.Z., Ruas J.L. (2017) Kynurenines: tryptophan’s metabolites in exercise, inflammation, and mental health. Science. 357, eaaf9794.
  4. Demontis F., Piccirillo R., Goldberg A.L., Perrimon N. (2013) The influence of skeletal muscle on systemic aging and lifespan. Aging Cell. 12, 943–949.
  5. Pedersen B.K., Febbraio M.A. (2012) Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat. Rev. Endocrinol. 8, 457–465.
  6. Pedersen B.K., Saltin B. (2015) Exercise as medicine – evidence for prescribing exercise as therapy in 26 different chronic diseases. Scand. J. Med. Sci. Sports. 25(Suppl 3), 1–72.
  7. Lopez-Otin C., Blasco M.A., Partridge L., Serrano M., Kroemer G. (2023) Hallmarks of aging: аn expanding universe. Cell. 186, 243–278.
  8. Brocchieri L., Conway de Macario E., Macario A.J. (2008) HSP70 genes in the human genome: сonservation and differentiation patterns predict a wide array of overlapping and specialized functions. BMC Evol. Biol. 8, 19.
  9. Rosenzweig R., Nillegoda N.B., Mayer M.P., Bukau B. (2019) The Hsp70 chaperone network. Nat. Rev. Mol. Cell Biol. 20, 665–680.
  10. Pfanner N., Warscheid B., Wiedemann N. (2019) Mitochondrial proteins: from biogenesis to functional networks. Nat. Rev. Mol. Cell Biol. 20, 267–284.
  11. Senf S.M. (2013) Skeletal muscle heat shock protein 70: diverse functions and therapeutic potential for wasting disorders. Front. Physiol. 4, 330.
  12. Henstridge D.C., Bruce C.R., Drew B.G., Tory K., Kolonics A., Estevez E., Chung J., Watson N., Gardner T., Lee-Young R.S., Connor T., Watt M.J., Carpenter K., Hargreaves M., McGee S.L., Hevener A.L., Febbraio M.A. (2014) Activating HSP72 in rodent skeletal muscle increases mitochondrial number and oxidative capacity and decreases insulin resistance. Diabetes. 63, 1881–1894.
  13. Chung J., Nguyen A.K., Henstridge D.C., Holmes A.G., Chan M.H., Mesa J.L., Lancaster G.I., Southgate R.J., Bruce C.R., Duffy S.J., Horvath I., Mestril R., Watt M.J., Hooper P.L., Kingwell B.A., Vigh L., Hevener A., Febbraio M.A. (2008) HSP72 protects against obesity-induced insulin resistance. Proc. Natl. Acad. Sci. USA. 105, 1739–1744.
  14. Chichester L., Wylie A.T., Craft S., Kavanagh K. (2015) Muscle heat shock protein 70 predicts insulin resistance with aging. J. Gerontol. A Biol. Sci. Med. Sci. 70, 155–162.
  15. Silverstein M.G., Ordanes D., Wylie A.T., Files D.C., Milligan C., Presley T.D., Kavanagh K. (2015) Inducing muscle heat shock protein 70 improves insulin sensitivity and muscular performance in aged mice. J. Gerontol. A Biol. Sci. Med. Sci. 70, 800–808.
  16. McArdle A., Dillmann W.H., Mestril R., Faulkner J.A., Jackson M.J. (2004) Overexpression of HSP70 in mouse skeletal muscle protects against muscle damage and age-related muscle dysfunction. FASEB J. 18, 355–357.
  17. Soler C., Daczewska M., Da Ponte J.P., Dastugue B., Jagla K. (2004) Coordinated development of muscles and tendons of the Drosophila leg. Development. 131, 6041–6051.
  18. Sujkowski A., Wessells R. (2018) Using Drosophila to understand biochemical and behavioral responses to exercise. Exerc. Sport. Sci. Rev. 46, 112–120.
  19. Sujkowski A., Ramesh D., Brockmann A., Wessells R. (2017) Octopamine drives endurance exercise adaptations in Drosophila. Cell Rep. 21, 1809–1823.
  20. Gong W.J., Golic K.G. (2004) Genomic deletions of the Drosophila melanogaster Hsp70 genes. Genetics. 168, 1467–1476.
  21. Han S.K., Lee D., Lee H., Kim D., Son H.G., Yang J.S., Lee S.V., Kim S. (2016) OASIS 2: online application for survival analysis 2 with features for the analysis of maximal lifespan and healthspan in aging research. Oncotarget. 7, 56147–56152.
  22. Mendez S., Watanabe L., Hill R., Owens M., Moraczewski J., Rowe G.C., Riddle N.C., Reed L.K. (2016) The TreadWheel: a novel apparatus to measure genetic variation in response to gently induced exercise for Drosophila. PLoS One. 11, e0164706.
  23. Spierer A.N., Yoon D., Zhu C.T., Rand D.M. (2021) FreeClimber: automated quantification of climbing performance in Drosophila. J. Exp. Biol. 224, jeb229377.
  24. Popov D.V., Makhnovskii P.A., Shagimardanova E.I., Gazizova G.R., Lysenko E.A., Gusev O.A., Vinogradova O.L. (2019) Contractile activity-specific transcriptome response to acute endurance exercise and training in human skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 316, e605–e614.
  25. Wisniewski J.R., Zougman A., Nagaraj N., Mann M. (2009) Universal sample preparation method for proteome analysis. Nat. Methods. 6, 359–362.
  26. Popov D.V., Makhnovskii P.A., Zgoda V.G., Gazizova G.R., Vepkhvadze T.F., Lednev E.M., Motanova E.S., Lysenko E.A., Orlov O.I., Tomilovskaya E.S. (2023) Rapid changes in transcriptomic profile and mitochondrial function in human soleus muscle after 3-day dry immersion. J. Appl. Physiol. (1985). 134, 1256–1264.
  27. Yu S.H., Kyriakidou P., Cox J. (2020) Isobaric matching between runs and novel PSM-level normalization in MaxQuant strongly improve reporter ion-based quantification. J. Proteome Res. 19, 3945–3954.
  28. Shilova V.Y., Zatsepina O.G., Garbuz D.G., Funikov S.Y., Zelentsova E.S., Schostak N.G., Kulikov A.M., Evgen’ev M.B. (2018) Heat shock protein 70 from a thermotolerant Diptera species provides higher thermoresistance to Drosophila larvae than correspondent endogenous gene. Insect. Mol. Biol. 27, 61–72.
  29. Xiao C., Hull D., Qiu S., Yeung J., Zheng J., Barwell T., Robertson R.M., Seroude L. (2019) Expression of heat shock protein 70 is insufficient to extend Drosophila melanogaster longevity. G3 (Bethesda). 9, 4197–4207.
  30. Campisi J., Kapahi P., Lithgow G.J., Melov S., Newman J.C., Verdin E. (2019) From discoveries in ageing research to therapeutics for healthy ageing. Nature. 571, 183–192.
  31. Goh J., Wong E., Soh J., Maier A.B., Kennedy B.K. (2023) Targeting the molecular & cellular pillars of human aging with exercise. FEBS J. 290, 649–668.
  32. Bisset E.S., Heinze-Milne S., Grandy S.A., Howlett S.E. (2022) Aerobic exercise attenuates frailty in aging male and female C57Bl/6 mice and effects systemic cytokines differentially by sex. J. Gerontol. A Biol. Sci. Med. Sci. 77, 41–46.
  33. Garcia-Valles R., Gomez-Cabrera M.C., Rodriguez-Manas L., Garcia-Garcia F.J., Diaz A., Noguera I., Olaso-Gonzalez G., Vina J. (2013) Life-long spontaneous exercise does not prolong lifespan but improves health span in mice. Longev. Healthspan. 2, 14.
  34. Wen D.T., Zheng L., Ni L., Wang H., Feng Y., Zhang M. (2016) The expression of CG9940 affects the adaptation of cardiac function, mobility, and lifespan to exercise in aging Drosophila. Exp. Gerontol. 83, 6–14.
  35. Wen D.T., Wang W.Q., Hou W.Q., Cai S.X., Zhai S.S. (2020) Endurance exercise protects aging Drosophila from high-salt diet (HSD)-induced climbing capacity decline and lifespan decrease by enhancing antioxidant capacity. Biol. Open. 9, bio045260.
  36. Li Q.F., Wang H., Zheng L., Yang F., Li H.Z., Li J.X., Cheng D., Lu K., Liu Y. (2019) Effects of modest hypoxia and exercise on cardiac function, sleep-activity, negative geotaxis behavior of aged female Drosophila. Front Physiol. 10, 1610.
  37. Ebanks B., Wang Y., Katyal G., Sargent C., Ingram T.L., Bowman A., Moisoi N., Chakrabarti L. (2021) Exercising D. melanogaster modulates the mitochondrial proteome and physiology. The effect on lifespan depends upon age and sex. Int. J. Mol. Sci. 22, 11606.
  38. Piazza N., Gosangi B., Devilla S., Arking R., Wessells R. (2009) Exercise-training in young Drosophila melanogaster reduces age-related decline in mobility and cardiac performance. PLoS One. 4, e5886.
  39. Sujkowski A., Bazzell B., Carpenter K., Arking R., Wessells R.J. (2015) Endurance exercise and selective breeding for longevity extend Drosophila health span by overlapping mechanisms. Aging (Albany NY). 7, 535–552.
  40. Demontis F., Piccirillo R., Goldberg A.L., Perrimon N. (2013) Mechanisms of skeletal muscle aging: insights from Drosophila and mammalian models. Dis. Model. Mech. 6, 1339–1352.
  41. Hunt L.C., Jiao J., Wang Y.D., Finkelstein D., Rao D., Curley M., Robles-Murguia M., Shirinifard A., Pagala V.R., Peng J., Fan Y., Demontis F. (2019) Circadian gene variants and the skeletal muscle circadian clock contribute to the evolutionary divergence in longevity across Drosophila populations. Genome Res. 29, 1262–1276.
  42. Chechenova M., Stratton H., Kiani K., Gerberich E., Alekseyenko A., Tamba N., An S., Castillo L., Czajkowski E., Talley C., Bryantsev A. (2023) Quantitative model of aging-related muscle degeneration: a Drosophila study. bioRxiv. Feb. 21, 2023.02.19.529145 doi: https://doi.org/10.1101/2023.02.19.529145
  43. Borsch A., Ham D.J., Mittal N., Tintignac L.A., Migliavacca E., Feige J.N., Ruegg M.A., Zavolan M. (2021) Molecular and phenotypic analysis of rodent models reveals conserved and species-specific modulators of human sarcopenia. Commun. Biol. 4, 194.
  44. Lagerwaard B., Nieuwenhuizen A.G., Bunschoten A., de Boer V.C.J., Keijer J. (2021) Matrisome, innervation and oxidative metabolism affected in older compared with younger males with similar physical activity. J. Cachexia Sarcopenia Muscle. 12, 1214–1231.
  45. Su J., Ekman C., Oskolkov N., Lahti L., Strom K., Brazma A., Groop L., Rung J., Hansson O. (2015) A novel atlas of gene expression in human skeletal muscle reveals molecular changes associated with aging. Skelet. Muscle. 5, 35.
  46. Hunt L.C., Graca F.A., Pagala V., Wang Y.D., Li Y., Yuan Z.F., Fan Y., Labelle M., Peng J., Demontis F. (2021) Integrated genomic and proteomic analyses identify stimulus-dependent molecular changes associated with distinct modes of skeletal muscle atrophy. Cell Rep. 37, 109971.
  47. Wheeler J.C., Bieschke E.T., Tower J. (1995) Muscle-specific expression of Drosophila hsp70 in response to aging and oxidative stress. Proc. Natl. Acad. Sci. USA. 92, 10408–10412.
  48. Попов Д.В., Виноградова О.Л., Згода В.Г. (2019) Подготовка образцов скелетной мышцы человека для протеомных исследований с использованием изобарической метки iTRAQ. Молекуляр. биология. 53, 685‒691.
  49. Deshmukh A.S., Murgia M., Nagaraj N., Treebak J.T., Cox J., Mann M. (2015) Deep proteomics of mouse skeletal muscle enables quantitation of protein isoforms, metabolic pathways, and transcription factors. Mol. Cell Proteomics. 14, 841–853.
  50. Makhnovskii P.A., Zgoda V.G., Bokov R.O., Shagimardanova E.I., Gazizova G.R., Gusev O.A., Lysenko E.A., Kolpakov F.A., Vinogradova O.L., Popov D.V. (2020). Regulation of proteins in human skeletal muscle: the role of transcription. Sci. Rep. 10, 3514.
  51. Rudler D.L., Hughes L.A., Viola H.M., Hool L.C., Rackham O., Filipovska A. (2021) Fidelity and coordination of mitochondrial protein synthesis in health and disease. J. Physiol. 599, 3449–3462.
  52. Khalimonchuk O., Bird A., Winge D.R. (2007) Evidence for a pro-oxidant intermediate in the assembly of cytochrome oxidase. J. Biol. Chem. 282, 17442–17449.
  53. Mymrikov E.V., Daake M., Richter B., Haslbeck M., Buchner J. (2017) The chaperone activity and substrate spectrum of human small heat shock proteins. J. Biol. Chem. 292, 672–684.
  54. Bo Zheng N., Ruan L., Kline J.T., Omkar S., Sikora J., Texeira Torres M., Wang Y., Takakuwa J.E., Huguet R., Klemm C., Segarra V.A., Winters M.J., Pryciak P.M., Thorpe P.H., Tatebayashi K., Li R., Fornelli L., Truman A.W. (2022) Comprehensive characterization of the Hsp70 interactome reveals novel client proteins and interactions mediated by posttranslational modifications. PLoS Biol. 20, e3001839.
  55. Adriaenssens E., Asselbergh B., Rivera-Mejias P., Bervoets S., Vendredy L., De Winter V., Spaas K., de Rycke R., van Isterdael G., Impens F., Langer T., Timmerman V. (2023) Small heat shock proteins operate as molecular chaperones in the mitochondrial intermembrane space. Nat. Cell Biol. 25, 467–480.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Knockout of six Hsp70 family genes reduces the median lifespan of D. melanogaster and has a pronounced negative effect on the speed of locomotion in the negative geotaxis test. a – Normalized number of reads (RNA sequencing) per open reading frame of each gene. n = 12 pools (legs of 15 flies) of each line. b and c – Proportion of surviving flies with normal and chronically elevated levels of motor (locomotor) activity. The p value is shown for comparison of curves, as well as for the median and maximum lifespan (proportion of survivors 50 and 10%); n > 150 in each line. TP – training. d – Age-related changes in the speed of locomotion in the negative geotaxis test. One and three asterisks represent p values ​​< 0.05 and < 0.001, respectively. n = 5–6 pools (10–30 flies per pool) of each line.

Download (287KB)
3. Fig. 2. Aging induces pronounced and progressive changes in the transcriptome profile of the legs (composed predominantly of muscle fiber bundles) of w1118 flies. Knockout of six Hsp70 family genes modulates age-related changes in the transcriptome of leg skeletal muscles. (a) Number of unique and common genes that are expressed differently in 23- and 47-day-old flies compared to 7-day-old flies. n = 4 pools (legs of 15 flies) of each strain. (b and c) Functional enrichment analysis of genes that are up-regulated (b) and down-regulated (c). The number of genes in each functional category is shown; the heat map shows the p-value.

Download (1MB)
4. Fig. 3. Knockout of six genes of the Hsp70 family disrupts the age-related dynamics of gene expression. The line represents the normalized expression values ​​(z-scale) of each gene of some enriched functional groups from Fig. 2b and c. The names and numbers of functional categories are given; n = 4 pools (legs of 15 flies) of each line.

Download (732KB)
5. Fig. 4. Knockout of six Hsp70 family genes causes opposite changes in the levels of key enzymes of glucose and lipid metabolism (glycolysis, pentose phosphate pathway, Krebs cycle, beta-oxidation, and oxidative phosphorylation) in the leg muscles of 47-day-old flies. a – Changes in mRNA and protein levels in skeletal leg muscles of Hsp70– flies relative to w1118 flies. mRNA n = 4 pools (legs of 15 flies) for each line; protein n = 7–8 pools (legs of 10 flies) for each line. b – Functional enrichment analysis showed that proteins with different patterns of regulation at the mRNA level were enriched in different functional categories. The number of genes in each category is shown; the heat map shows the p-value. c – Opposite changes in the content of oxidative phosphorylation proteins in the legs of 47-day-old Hsp70– flies and w1118 flies (see Fig. S1, Supplementary Materials). N.S. – no change in protein content detected; N.D. – no protein detected.

Download (640KB)
6. Supplementary Figure S1
Download (174KB)
7. Supplementary Table S1
Download (2MB)
8. Supplementary Table S2
Download (20KB)

Copyright (c) 2024 Russian Academy of Sciences