rs2564978(T) allele associated with severe influenza a disrupts binding site for myeloid differentiation factor PU.1 and reduces CD55/DAF gene promoter activity in macrophages

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

An inhibitor of the complement system CD55/DAF is expressed on many cell types. Dysregulation of CD55 expression is associated with increased disease severity during influenza A infection, as well as with vascular complications in pathologies involving excessive activation of the complement system. Using a luciferase reporter system, we performed functional analysis of the single nucleotide polymorphism rs2564978 located in the promoter of the CD55 gene in human pro-monocytic cell line U937. We have shown a decreased activity in activated U937 cells of the CD55 gene promoter carrying minor rs2564978(T) allele associated with the severe course of influenza A(H1N1)pdm09. Using bioinformatic resources, we determined that transcription factor PU.1 can potentially bind to the CD55 promoter region containing rs2564978 in an allele-specific manner. The involvement of PU.1 in modulating CD55 promoter activity was determined by genetic knockdown of PU.1 using small interfering RNAs under specific monocyte activation conditions.

Негізгі сөздер

Толық мәтін

Рұқсат жабық

Авторлар туралы

A. Uvarova

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: uvarowww@gmail.com

Center for Precision Genome Editing and Genetic Technologies for Biomedicine

Ресей, Moscow, 119991

E. Tkachenko

Engelhardt Institute of Molecular Biology Russian Academy of Sciences; Lomonosov Moscow State University

Email: uvarowww@gmail.com

Faculty of Biology, Lomonosov Moscow State University

Ресей, Moscow, 119991; Moscow, 119234

E. Stasevich

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Email: uvarowww@gmail.com

Center for Precision Genome Editing and Genetic Technologies for Biomedicine

Ресей, Moscow, 119991

E. Bogomolova

Engelhardt Institute of Molecular Biology Russian Academy of Sciences; Moscow Institute of Physics and Technology, Department of Molecular and Biological Physics

Email: uvarowww@gmail.com
Ресей, Moscow, 119991; Moscow, 141701

E. Zheremyan

Engelhardt Institute of Molecular Biology Russian Academy of Sciences; Lomonosov Moscow State University

Email: uvarowww@gmail.com

Faculty of Biology, Lomonosov Moscow State University

Ресей, Moscow, 119991; Moscow, 119234

D. Kuprash

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences; Lomonosov Moscow State University; Moscow Institute of Physics and Technology

Email: uvarowww@gmail.com

Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences; Faculty of Biology, Lomonosov Moscow State University; Moscow Institute of Physics and Technology, Department of Molecular and Biological Physics

Ресей, Moscow, 119991; Moscow, 119234; Moscow, 141701

K. Korneev

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences; National Research Center for Hematology

Email: uvarowww@gmail.com

Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Ресей, Moscow, 119991; Moscow, 125167

Әдебиет тізімі

  1. Dho S.H., Lim J.C., Kim L.K. (2018) Beyond the role of CD55 as a complement component. Immune Netw. 18(1), e11.
  2. Cunningham F., Allen J.E., Allen J., Alvarez-Jarreta J., Amode M.R., Armean I.M., Austine-Orimoloye O., Azov A.G., Barnes I., Bennett R., Berry A., Bhai J., Bignell A., Billis K., Boddu S., Brooks L., Charkhchi M., Cummins C., Da Rin Fioretto L., Davidson C., Dodiya K., Donaldson S., El Houdaigui B., El Naboulsi T., Fatima R., Giron C.G., Genez T., Martinez J.G., Guijarro-Clarke C., Gymer A., Hardy M., Hollis Z., Hourlier T., Hunt T., Juettemann T., Kaikala V., Kay M., Lavidas I., Le T., Lemos D., Marugán J.C., Mohanan S., Mushtaq A., Naven M., Ogeh D.N., Parker A., Parton A., Perry M., Pilizota I., Prosovetskaia I., Sakthivel M.P., Salam A.I.A., Schmitt B.M., Schuilenburg H., Sheppard D., Perez-Silva J.G., Stark W., Steed E., Sutinen K., Sukumaran R., Sumathipala D., Suner M.M., Szpak M., Thormann A., Tricomi F.F., Urbina-Gómez D., Veidenberg A., Walsh T.A., Walts B., Willhoft N., Winterbottom A., Wass E., Chakiachvili M., Flint B., Frankish A., Giorgetti S., Haggerty L., Hunt S.E., Iisley G.R., Loveland J.E., Martin F.J., Moore B., Mudge J.M., Muffato M., Perry E., Ruffier M., Tate J., Thybert D., Trevanion S.J., Dyer S., Harrison P.W., Howe K.L., Yates A.D., Zerbino D.R., Flicek P. (2022) Ensembl 2022. Nucl. Acids Res. 50(D1), D988.
  3. Forrest A.R.R., Kawaji H., Rehli M., Baillie J.K., De Hoon M.J.L., Haberle V., Lassmann T., Kulakovskiy I.V., Lizio M., Itoh M., Andersson R., Mungall C.J., Meehan T.F., Schmeier S., Bertin N., Jørgensen M., Dimont E., Arner E., Schmidl C., Schaefer U., Medvedeva Y.A., Plessy C., Vitezic M., Severin J., Semple C.A., Ishizu Y., Young R.S., Francescatto M., Altschuler I.A., Albanese D., Altschule G.M., Arakawa T., Archer J.A.C., Arner P., Babina M., Rennie S., Balwierz P.J., Beckhouse A.G., Pradhan-Bhatt S., Blake J.A., Blumenthal A., Bodega B., Bonetti A., Briggs J., Brombacher F., Burroughs A.M., Califano A., Cannistraci C.V., Carbajo D., Chen Y., Chierici M., Ciani Y., Clevers H.C., Dalla E., Davis C.A., Detmar M., Diehl A.D., Dohi T., Drabløs F., Edge A.S.B., Edinger M., Ekwall K., Endoh M., Enomoto H., Fagiolini M., Fairbairn L., Fang H., Farach-Carson M.C., Faulkner G.J., Favorov A.V., Fisher M.E., Frith M.C., Fujita R., Fukuda S., Furlanello C., Furuno M., Furusawa J.I., Geijtenbeek T.B., Gibson A.P., Gingeras T., Goldowitz D., Gough J., Guhl S., Guler R., Gustincich S., Ha T.J., Hamaguchi M., Hara M., Harbers M., Harshbarger J., Hasegawa A., Hasegawa Y., Hashimoto T., Herlyn M., Hitchens K.J., Sui S.J.H., Hofmann O.M., Hoof I., Hori F., Huminiecki L., Iida K., Ikawa T., Jankovic B.R., Jia H., Joshi A., Jurman G., Kaczkowski B., Kai C., Kaida K., Kaiho A., Kajiyama K., Kanamori-Katayama M., Kasianov A.S., Kasukawa T., Katayama S., Kato S., Kawaguchi S., Kawamoto H., Kawamura Y.I., Kawashima T., Kempfle J.S., Kenna T.J., Kere J., Khachigian L.M., Kitamura T., Klinken S.P., Knox A.J., Kojima M., Kojima S., Kondo N., Koseki H., Koyasu S., Krampitz S., Kubosaki A., Kwon A.T., Laros J.F.J., Lee W., Lennartsson A., Li K., Lilje B., Lipovich L., Mackay-sim A., Manabe R.I., Mar J.C., Marchand B., Mathelier A., Mejhert N., Meynert A., Mizuno Y., De Morais D.A.L., Morikawa H., Morimoto M., Moro K., Motakis E., Motohashi H., Mummery C.L., Murata M., Nagao-Sato S., Nakachi Y., Nakahara F., Nakamura T., Nakamura Y., Nakazato K., Van Nimwegen E., Ninomiya N., Nishiyori H., Noma S., Nozaki T., Ogishima S., Ohkura N., Ohmiya H., Ohno H., Ohshima M., Okada-Hatakeyama M., Okazaki Y., Orlando V., Ovchinnikov D.A., Pain A., Passier R., Patrikakis M., Persson H., Piazza S., Prendergast J.G.D., Rackham O.J.L., Ramilowski J.A., Rashid M., Ravasi T., Rizzu P., Roncador M., Roy S., Rye M.B., Saijyo E., Sajantila A., Saka A., Sakaguchi S., Sakai M., Sato H., Satoh H., Savvi S., Saxena A., Schneider C., Schultes E.A., Schulze-Tanzil G.G., Schwegmann A., Sengstag T., Sheng G., Shimoji H., Shimoni Y., Shin J.W., Simon C., Sugiyama D., Sugiyama T., Suzuki M., Suzuki N., Swoboda R.K., ’T Hoen P.A.C., Tagami M., Tagami N.T., Takai J., Tanaka H., Tatsukawa H., Tatum Z., Thompson M., Toyoda H., Toyoda T., Valen E., Van De Wetering M., Van Den Berg L.M., Verardo R., Vijayan D., Vorontsov I.E., Wasserman W.W., Watanabe S., Wells C.A., Winteringham L.N., Wolvetang E., Wood E.J., Yamaguchi Y., Yamamoto M., Yoneda M., Yonekura Y., Yoshida S., Zabierowski S.E., Zhang P.G., Zhao X., Zucchelli S., Summers K.M., Suzuki H., Daub C.O., Kawai J., Heutink P., Hide W., Freeman T.C., Lenhard B., Bajic L.V.B., Taylor M.S., Makeev V.J., Sandelin A., Hume D.A., Carninci P., Hayashizaki Y. (2014) A promoter-level mammalian expression atlas. Nature. 507(7493), 462–470.
  4. Vainer E.D., Meir K., Furman M., Semenenko I., Konikoff F., Vainer G.W. (2013) Characterization of novel CD55 isoforms expression in normal and neoplastic tissues. Tissue Antigens. 82(1), 26–34.
  5. Geller A., Yan J. (2019) The role of membrane bound complement regulatory proteins in tumor development and cancer immunotherapy. Front. Immunol. 10, 1074.
  6. Santos N.B., Vaz Da Silva Z.E., Gomes C., Reis C.A., Amorim M.J. (2021) Complement decay-accelerating factor is a modulator of influenza A virus lung immunopathology. PLoS Pathog. 17(7), e1009381.
  7. Abbott R.J.M., Spendlove I., Roversi P., Fitzgibbon H., Knott V., Teriete P., McDonnell J.M., Handford P.A., Lea S.M. (2007) Structural and functional characterization of a novel T cell receptor co-regulatory protein complex, CD97-CD55. J. Biol. Chem. 282(30), 22023–22032.
  8. Hamann J., Wishaupt J.O., Van Lier R.A.W., Smeets T.J.M., Breedveld F.C., Tak P.P. (1999) Expression of the activation antigen CD97 and its ligand CD55 in rheumatoid synovial tissue. Arthritis Rheum. 42(4), 650‒658.
  9. Miwa T., Maldonado M.A., Zhou L., Yamada K., Gilkeson G.S., Eisenberg R.A., Song W.C. (2007) Decay-accelerating factor ameliorates systemic autoimmune disease in MRL/Ipr mice via both complement-dependent and -independent mechanisms. Am. J. Pathol. 170(4), 1258‒1266.
  10. Ozen A., Comrie W.A., Ardy R.C., Domínguez Conde C., Dalgic B., Beser Ö.F., Morawski A.R., Karakoc-Aydiner E., Tutar E., Baris S., Ozcay F., Serwas N.K., Zhang Y., Matthews H.F., Pittaluga S., Folio L.R., Unlusoy Aksu A., McElwee J.J., Krolo A., Kiykim A., Baris Z., Gulsan M., Ogulur I., Snapper S.B., Houwen R.H.J., Leavis H.L., Ertem D., Kain R., Sari S., Erkan T., Su H.C., Boztug K., Lenardo M.J. (2017) CD55 deficiency, early-onset protein-losing enteropathy, and thrombosis. N. Engl. J. Med. 377(1), 52‒61.
  11. Brodsky R.A. (2008) Advances in the diagnosis and therapy of paroxysmal nocturnal hemoglobinuria. Blood Rev. 22(2), 65‒74.
  12. Ma X.W., Chang Z.W., Qin M.Z., Sun Y., Huang H.L., He Y. (2009) Decreased expression of complement regulatory proteins, CD55 and CD59, on peripheral blood leucocytes in patients with type 2 diabetes and macrovascular diseases. Chin. Med. J. 122(18), 2123‒2128.
  13. Zhang J., Gerhardinger C., Lorenzi M. (2002) Early complement activation and decreased levels of glycosylphosphatidylinositol-anchored complement inhibitors in human and experimental diabetic retinopathy. Diabetes. 51(12), 3499‒3504.
  14. Mishra N., Mohata M., Narang R., Lakshmy R., Hazarika A., Pandey R.M., Das N., Luthra K. (2019) Altered expression of complement regulatory proteins CD35, CD46, CD55, and CD59 on leukocyte subsets in individuals suffering from coronary artery disease. Front. Immunol. 10, 2072.
  15. Bergelson J.M., Chan M., Solomon K.R., St. John N.F., Lin H., Finberg R.W. (1994) Decay-accelerating factor (CD55), a glycosylphosphatidylinositol-anchored complement regulatory protein, is a receptor for several echoviruses. Proc. Natl. Acad. Sci. USA. 91(13), 6245‒6248.
  16. Stoermer K.A., Morrison T.E. (2011) Complement and viral pathogenesis. Virol. J. 411(2), 362–373.
  17. Biryukov S., Stoute J.A. (2014) Complement activation in malaria: friend or foe? Trends Mol. Med. 20(5), 293‒301.
  18. Zhang J., Li G., Liu X., Wang Z., Liu W., Ye X. (2009) Influenza A virus M1 blocks the classical complement pathway through interacting with C1qA. J. Gen. Virol. 90(Pt. 11), 2751–2758.
  19. Nogales A., Dediego M.L. (2019) Host single nucleotide polymorphisms modulating influenza a virus disease in humans. Pathogens. 8(4), 168.
  20. Lage S.L., Rocco J.M., Laidlaw E., Rupert A., Galindo F., Kellogg A., Kumar P., Poon R., Wortmann G.W., Lisco A., Manion M., Sereti I. (2022) Activation of complement components on circulating blood monocytes from COVID-19 patients. Front. Immunol. 13, 815833.
  21. Zhou J., To K.K.W., Dong H., Cheng Z.S., Lau C.C.Y., Poon V.K.M., Fan Y.H., Song Y.Q., Tse H., Chan K.H., Zheng B.J., Zhao G.P., Yuen K.Y. (2012) A functional variation in CD55 increases the severity of 2009 pandemic H1N1 influenza a virus infection. J. Infect. Dis. 206(4), 495‒503.
  22. Chatzopoulou F., Gioula G., Kioumis I., Chatzidimitriou D., Exindari M. (2019) Identification of complement-related host genetic risk factors associated with influenza A(H1N1)pdm09 outcome: challenges ahead. Med. Microbiol. Immunol. 208(5), 631‒640.
  23. Lee N., Cao B., Ke C., Lu H., Hu Y., Tam C.H.T., Ma R.C.W., Guan D., Zhu Z., Li H., Lin M., Wong R.Y.K., Yung I.M.H., Hung T.-N., Kwok K., Horby P., Hui D.S.C., Chan M.C.W., Chan P.K.S. (2017) Single-nucleotide polymorphisms of IFITM3, TLR3, CD55, and TLR4 and risk for severe outcomes in patients with influenza A (H7N9) and (H1N1) pdm09 in China: a multicentre cohort study. Lancet. 390, S1.
  24. Zhang Y., Zhang Z., Cao L., Lin J., Yang Z., Zhang X. (2017) A common CD55 rs2564978 variant is associated with the susceptibility of non-small cell lung cancer. Oncotarget. 8(4), 6216‒6221.
  25. Wu H.J., Gao H., Xie Y.N., Zhang Y.Y., Yang Z.B., Zhang X.M. (2018) A promoter polymorphism of CD55 effect on the risk of esophageal cancer. Zhonghua yu fang yi xue za zhi [Chinese J. Preventive Med.]. 52(8), 822–826.
  26. Li M., Li Y.P., Deng H.L., Wang M.Q., Wang W.J., Wang J., Wu F.P., Dang S.S. (2020) Association of gene polymorphisms of CD55 with susceptibility to and severity of hand, foot, and mouth disease caused by enterovirus 71 in the Han Chinese population. J. Med. Virol. 92(12), 3119‒3124.
  27. Dunham I., Kundaje A., Aldred S.F., Collins P.J., Davis C.A., Doyle F., Epstein C.B., Frietze S., Harrow J., Kaul R., Khatun J., Lajoie B.R., Landt S.G., Lee B.K., Pauli F., Rosenbloom K.R., Sabo P., Safi A., Sanyal A., Shoresh N., Simon J.M., Song L., Trinklein N.D., Altshuler R.C., Birney E., Brown J.B., Cheng C., Djebali S., Dong X., Ernst J., Furey T.S., Gerstein M., Giardine B., Greven M., Hardison R.C., Harris R.S., Herrero J., Hoffman M.M., Iyer S., Kellis M., Kheradpour P., Lassmann T., Li Q., Lin X., Marinov G.K., Merkel A., Mortazavi A., Parker S.C.J., Reddy T.E., Rozowsky J., Schlesinger F., Thurman R.E., Wang J., Ward L.D., Whitfield T.W., Wilder S.P., Wu W., Xi H.S., Yip K.Y., Zhuang J., Bernstein B.E., Green E.D., Gunter C., Snyder M., Pazin M.J., Lowdon R.F., Dillon L.A.L., Adams L.B., Kelly C.J., Zhang J., Wexler J.R., Good P.J., Feingold E.A., Crawford G.E., Dekker J., Elnitski L., Farnham P.J., Giddings M.C., Gingeras T.R., Guigó R., Hubbard T.J., Kent W.J., Lieb J.D., Margulies E.H., Myers R.M., Stamatoyannopoulos J.A., Tenenbaum S.A., Weng Z., White K.P., Wold B., Yu Y., Wrobel J., Risk B.A., Gunawardena H.P., Kuiper H.C., Maier C.W., Xie L., Chen X., Mikkelsen T.S., Gillespie S., Goren A., Ram O., Zhang X., Wang L., Issner R., Coyne M.J., Durham T., Ku M., Truong T., Eaton M.L., Dobin A., Tanzer A., Lagarde J., Lin W., Xue C., Williams B.A., Zaleski C., Röder M., Kokocinski F., Abdelhamid R.F., Alioto T., Antoshechkin I., Baer M.T., Batut P., Bell I., Bell K., Chakrabortty S., Chrast J., Curado J., Derrien T., Drenkow J., Dumais E., Dumais J., Duttagupta R., Fastuca M., Fejes-Toth K., Ferreira P., Foissac S., Fullwood M.J., Gao H., Gonzalez D., Gordon A., Howald C., Jha S., Johnson R., Kapranov P., King B., Kingswood C., Li G., Luo O.J., Park E., Preall J.B., Presaud K., Ribeca P., Robyr D., Ruan X., Sammeth M., Sandhu K.S., Schaeffer L., See L.H., Shahab A., Skancke J., Suzuki A.M., Takahashi H., Tilgner H., Trout D., Walters N., Wang H., Hayashizaki Y., Reymond A., Antonarakis S.E., Hannon G.J., Ruan Y., Carninci P., Sloan C.A., Learned K., Malladi V.S., Wong M.C., Barber G.P., Cline M.S., Dreszer T.R., Heitner S.G., Karolchik D., Kirkup V.M., Meyer L.R., Long J.C., Maddren M., Raney B.J., Grasfeder L.L., Giresi P.G., Battenhouse A., Sheffield N.C., Showers K.A., London D., Bhinge A.A., Shestak C., Schaner M.R., Kim S.K., Zhang Z.Z., Mieczkowski P.A., Mieczkowska J.O., Liu Z., McDaniell R.M., Ni Y., Rashid N.U., Kim M.J., Adar S., Zhang Z., Wang T., Winter D., Keefe D., Iyer V.R., Zheng M., Wang P., Gertz J., Vielmetter J., Partridge E.C., Varley K.E., Gasper C., Bansal A., Pepke S., Jain P., Amrhein H., Bowling K.M., Anaya M., Cross M.K., Muratet M.A., Newberry K.M., McCue K., Nesmith A.S., Fisher-Aylor K.I., Pusey B., DeSalvo G., Parker S.L., Balasubramanian S., Davis N.S., Meadows S.K., Eggleston T., Newberry J.S., Levy S.E., Absher D.M., Wong W.H., Blow M.J., Visel A., Pennachio L.A., Petrykowska H.M., Abyzov A., Aken B., Barrell D., Barson G., Berry A., Bignell A., Boychenko V., Bussotti G., Davidson C., Despacio-Reyes G., Diekhans M., Ezkurdia I., Frankish A., Gilbert J., Gonzalez J.M., Griffiths E., Harte R., Hendrix D.A., Hunt T., Jungreis I., Kay M., Khurana E., Leng J., Lin M.F., Loveland J., Lu Z., Manthravadi D., Mariotti M., Mudge J., Mukherjee G., Notredame C., Pei B., Rodriguez J.M., Saunders G., Sboner A., Searle S., Sisu C., Snow C., Steward C., Tapanari E., Tress M.L., Van Baren M.J., Washietl S., Wilming L., Zadissa A., Zhang Z., Brent M., Haussler D., Valencia A., Addleman N., Alexander R.P., Auerbach R.K., Balasubramanian S., Bettinger K., Bhardwaj N., Boyle A.P., Cao A.R., Cayting P., Charos A., Cheng Y., Eastman C., Euskirchen G., Fleming J.D., Grubert F., Habegger L., Hariharan M., Harmanci A., Iyengar S., Jin V.X., Karczewski K.J., Kasowski M., Lacroute P., Lam H., Lamarre-Vincent N., Lian J., Lindahl-Allen M., Min R., Miotto B., Monahan H., Moqtaderi Z., Mu X.J., O’Geen H., Ouyang Z., Patacsil D., Raha D., Ramirez L., Reed B., Shi M., Slifer T., Witt H., Wu L., Xu X., Yan K.K., Yang X., Struhl K., Weissman S.M., Penalva L.O., Karmakar S., Bhanvadia R.R., Choudhury A., Domanus M., Ma L., Moran J., Victorsen A., Auer T., Centanin L., Eichenlaub M., Gruhl F., Heermann S., Hoeckendorf B., Inoue D., Kellner T., Kirchmaier S., Mueller C., Reinhardt R., Schertel L., Schneider S., Sinn R., Wittbrodt B., Wittbrodt J., Jain G., Balasundaram G., Bates D.L., Byron R., Canfield T.K., Diegel M.J., Dunn D., Ebersol A.K., Frum T., Garg K., Gist E., Hansen R.S., Boatman L., Haugen E., Humbert R., Johnson A.K., Johnson E.M., Kutyavin T.V., Lee K., Lotakis D., Maurano M.T., Neph S.J., Neri F.V., Nguyen E.D., Qu H., Reynolds A.P., Roach V., Rynes E., Sanchez M.E., Sandstrom R.S., Shafer A.O., Stergachis A.B., Thomas S., Vernot B., Vierstra J., Vong S., Wang H., Weaver M.A., Yan Y., Zhang M., Akey J.M., Bender M., Dorschner M.O., Groudine M., MacCoss M.J., Navas P., Stamatoyannopoulos G., Beal K., Brazma A., Flicek P., Johnson N., Lukk M., Luscombe N.M., Sobral D., Vaquerizas J.M., Batzoglou S., Sidow A., Hussami N., Kyriazopoulou-Panagiotopoulou S., Libbrecht M.W., Schaub M.A., Miller W., Bickel P.J., Banfai B., Boley N.P., Huang H., Li J.J., Noble W.S., Bilmes J.A., Buske O.J., Sahu A.D., Kharchenko P.V., Park P.J., Baker D., Taylor J., Lochovsky L. (2012) An integrated encyclopedia of DNA elements in the human genome. Nature. 489(7414), 57–74.
  28. Kundaje A., Meuleman W., Ernst J., Bilenky M., Yen A., Heravi-Moussavi A., Kheradpour P., Zhang Z., Wang J., Ziller M.J., Amin V., Whitaker J.W., Schultz M.D., Ward L.D., Sarkar A., Quon G., Sandstrom R.S., Eaton M.L., Wu Y.-C., Pfenning A.R., Wang X., Claussnitzer M., Liu Y., Coarfa C., Harris R.A., Shoresh N., Epstein C.B., Gjoneska E., Leung D., Xie W., Hawkins R.D., Lister R., Hong C., Gascard P., Mungall A.J., Moore R., Chuah E., Tam A., Canfield T.K., Hansen R.S., Kaul R., Sabo P.J., Bansal M.S., Carles A., Dixon J.R., Farh K.-H., Feizi S., Karlic R., Kim A.-R., Kulkarni A., Li D., Lowdon R., Elliott G., Mercer T.R., Neph S.J., Onuchic V., Polak P., Rajagopal N., Ray P., Sallari R.C., Siebenthall K.T., Sinnott-Armstrong N.A., Stevens M., Thurman R.E., Wu J., Zhang B., Zhou X., Beaudet A.E., Boyer L.A., De Jager P.L., Farnham P.J., Fisher S.J., Haussler D., Jones S.J.M., Li W., Marra M.A., McManus M.T., Sunyaev S., Thomson J.A., Tlsty T.D., Tsai L.-H., Wang W., Waterland R.A., Zhang M.Q., Chadwick L.H., Bernstein B.E., Costello J.F., Ecker J.R., Hirst M., Meissner A., Milosavljevic A., Ren B., Stamatoyannopoulos J.A., Wang T., Kellis M. (2015) Integrative analysis of 111 reference human epigenomes. Nature. 518(7539), 317–330.
  29. Ernst J., Kellis M. (2017) Chromatin-state discovery and genome annotation with ChromHMM. Nat. Protoc. 12(12), 2478–2492.
  30. Abramov S., Boytsov A., Bykova D., Penzar D.D., Yevshin I., Kolmykov S.K., Fridman M.V., Favorov A.V., Vorontsov I.E., Baulin E., Kolpakov F., Makeev V.J., Kulakovskiy I.V. (2021) Landscape of allele-specific transcription factor binding in the human genome. Nat. Commun. 12(1), 2751.
  31. Ustiugova A.S., Korneev K.V., Kuprash D.V., Afanasyeva M.A. (2019) Functional SNPs in the human autoimmunity-associated locus 17q12-21. Genes. 10(2), 77.
  32. Schotte R., Nagasawa M., Weijer K., Spits H., Blom B. (2004) The ETS transcription factor Spi-B is required for human plasmacytoid dendritic cell development. J. Exp. Med. 200(11), 1503‒1509.
  33. Roberts N.J. (2020) Diverse and unexpected roles of human monocytes/macrophages in the immune response to influenza virus. Viruses. 12(4), 379.
  34. Nascimento C.R., Rodrigues Fernandes N.A., Gonzalez Maldonado L.A., Rossa Junior C. (2022) Comparison of monocytic cell lines U937 and THP-1 as macrophage models for in vitro studies. Biochem. Biophys. Rep. 32, 101383.
  35. Wang N., Liang H., Zen K. (2014) Molecular mechanisms that influence the macrophage M1-M2 polarization balance. Front. Immunol. 5, 614.
  36. Uvarova A.N., Stasevich E.M., Ustiugova A.S., Mitkin N.A., Zheremyan E.A., Sheetikov S.A., Zornikova K.V., Bogolyubova A.V., Rubtsov M.A., Kulakovskiy I.V., Kuprash D.V., Korneev K.V., Schwartz A.M. (2023) rs71327024 associated with COVID-19 hospitalization reduces CXCR6 promoter activity in human CD4+ T cells via disruption of c-Myb binding. Int. J. Mol. Sci. 24(18), 13790.
  37. Korneev K.V., Sviriaeva E.N., Mitkin N.A., Gorbacheva A.M., Uvarova A.N., Ustiugova A.S., Polanovsky O.L., Kulakovskiy I.V., Afanasyeva M.A., Schwartz A.M., Kuprash D.V. (2020) Minor C allele of the SNP rs7873784 associated with rheumatoid arthritis and type-2 diabetes mellitus binds PU.1 and enhances TLR4 expression. Biochim. Biophys. Acta – Mol. Basis Dis. 1866(3), 165626.
  38. Fisher R.C., Scott E.W. (1998) Role of PU.1 in hematopoiesis. Stem Cells. 16 (1), 25–37.
  39. Orozco G., Schoenfelder S., Walker N., Eyre S., Fraser P. (2022) 3D genome organization links non-coding disease-associated variants to genes. Front. Cell Dev. Biol. 10, 995388.
  40. Johnston A.D., Simões-Pires C.A., Thompson T.V., Suzuki M., Greally J.M. (2019) Functional genetic variants can mediate their regulatory effects through alteration of transcription factor binding. Nat. Commun. 10(1), 3472.
  41. Lin S.H., Thakur R., Machiela M.J. (2021) LDexpress: an online tool for integrating population-specific linkage disequilibrium patterns with tissue-specific expression data. BMC Bioinform. 22(1), 608.
  42. Kawai T., Takeshita S., Imoto Y., Matsumoto Y., Sakashita M., Suzuki D., Shibasaki M., Tamari M., Hirota T., Arinami T., Fujieda S., Noguchi E. (2009) Associations between decay-accelerating factor polymorphisms and allergic respiratory diseases. Clin. Exp. Allergy. 39(10), 1508‒1514.
  43. Свиряева Е.Н., Корнеев К.В., Друцкая М.С., Купраш Д.В. (2016) Механизмы перестройки иммунного ответа при вирусно-бактериальных коинфекциях дыхательных путей (обзор). Биохимия. 81(11), 1593‒1603.
  44. Perico L., Benigni A., Casiraghi F., Ng L.F.P., Renia L., Remuzzi G. (2021) Immunity, endothelial injury and complement-induced coagulopathy in COVID-19. Nat. Rev. Nephrol. 17(1), 46‒64.
  45. Latreille E., Lee W.L. (2021) Interactions of influenza and sars-cov-2 with the lung endothelium: Similarities, differences, and implications for therapy. Viruses. 13(2), 161.
  46. Aydin Ozgur B., Coskunpinar E., Bilgic Gazioglu S., Yilmaz A., Musteri Oltulu Y., Cakmakoglu B., Deniz G., Gurol A.O., Yilmaz M.T. (2020) Effects of complement regulators and chemokine receptors in type 2 diabetes. Immunol. Invest. 50(5), 478‒491.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Schematic representation of the location of rs2564978 in the CD55 gene promoter visualized using UCSC Genome Browser (GRCh38/hg38). The CD55 gene promoter region is shown in blue. The red vertical line indicates the location of the rs2564978 single nucleotide polymorphism. Histograms show the locations of histone modifications associated with active regulatory regions of the genome (mono/trimethylation of H3K4, acetylation of H3K27; Roadmap) in CD14+ monocytes. Rectangles mark DNase I hypersensitivity clusters in CD14+ monocytes and transcription factor binding sites (ChIP-seq ENCODE). ChromHMM characterizes chromatin activity in several subsets of CD14+ monocytes (according to Roadmap data): red and orange indicate promoter-like regions, yellow – enhancer-like regions.

Жүктеу (210KB)
3. Fig. 2. CD55 gene promoter activity is reduced in the presence of the minor rs2564978(T) allele in a macrophage cell model. a – Schematic of the pGL3-basic luciferase reporter construct containing the CD55 gene promoter with alternative rs2564978 alleles. b – Stimulation of U937 monocytes with PMA or PMA+LPS increases the allele-dependent difference in CD55 promoter activity. Expression of the luciferase reporter was normalized to the expression of the internal control luciferase (Renilla). c – Relative expression of CD55 mRNA in unactivated U937 (PBS) and after stimulation with PMA or PMA+LPS. The graphs show the results of three experiments as mean values ​​± SEM. *P < 0.05 – difference between rs2564978(C) and rs2564978(T) variants, ###P < 0.0001 – difference between unstimulated (PBS) and activated cells (unpaired Student’s t-test).

Жүктеу (139KB)
4. Fig. 3. Genetic knockdown of PU.1 (SPI1) in activated U937 monocytes reduces the activity of the CD55 promoter containing the major rs2564978(C) allele. a – Logo diagram of the PU.1 (SPI1) binding site from the HOCOMOCO v11 database and superimposed CD55 promoter sequences containing different rs2564978 alleles (highlighted in color). P-values ​​of motifs that characterize the predicted binding specificity of PU.1 for alternative alleles are shown above the sequences. b – Relative expression level of SPI1 mRNA in non-activated U937 (PBS), in PMA-stimulated or PMA+LPS-stimulated U937 monocytes. *P < 0.05 – difference between the level of SPI1 mRNA expression in PMA+LPS-stimulated U937 monocytes and in non-activated U937 (unpaired Student’s t-test). c – Relative level of SPI1 mRNA expression in U937 cells upon SPI1 knockdown. *P < 0.05 (unpaired Student’s t-test). d – Relative level of reporter luciferase activity under the CD55 promoter with different rs2564978 variants upon SPI1 knockdown in activated U937 cells. Normalization to the luciferase activity of the internal control. Unmodified cells (control) and cells transfected with non-specific siRNA (siRNA-scr) served as controls. *P < 0.05 – difference between rs2564978(C) and rs2564978(T) variants (unpaired Student’s t-test). #P < 0.05 – difference between rs2564978(C) variant in SPI1 knockdown, control and siRNA-scr. d – Relative level of CD55 mRNA expression in SPI1 knockdown. Mean values ​​± SEM calculated from three experiments are presented.

Жүктеу (199KB)
5. Fig. 4. Hypothetical scheme of the allele-specific influence of rs2564978 on the development of pathological complications associated with hyperactivation of the complement system (image made using BioRender.com).

Жүктеу (204KB)

© Russian Academy of Sciences, 2024