Structural features of skeletal muscle titin aggregates
- Authors: Bobyleva L.G.1, Uryupina T.A.1, Penkov N.V.2, Timchenko M.A.1, Ulanova A.D.1, Gabdulkhakov A.G.3, Vikhlyantsev I.M.1, Bobylev A.G.1
-
Affiliations:
- Institute of Theoretical and Experimental Biophysics Russian Academy of Sciences
- Institute of Cell Biophysics Russian Academy of Sciences
- Institute of Protein Research Russian Academy of Sciences
- Issue: Vol 58, No 2 (2024)
- Pages: 314-324
- Section: СТРУКТУРНО-ФУНКЦИОНАЛЬНЫЙ АНАЛИЗ БИОПОЛИМЕРОВИ ИХ КОМПЛЕКСОВ
- URL: https://innoscience.ru/0026-8984/article/view/655335
- DOI: https://doi.org/10.31857/S0026898424020143
- EDN: https://elibrary.ru/MYWWYU
- ID: 655335
Cite item
Abstract
Titin is a multidomain protein of striated and smooth muscles of vertebrates. The protein consists of repeating immunoglobulin-like (Ig) and fibronectin-like (FnIII) domains, which are β-sandwiches with a predominant β-structure, and also contains disordered regions. In this work, the methods of atomic force microscopy (AFM), X-ray diffraction and Fourier transform infrared spectroscopy were used to study the morphology and structure of aggregates of rabbit skeletal muscle titin obtained in two different solutions: 0.15 M glycine-KOH, pH 7.0 and 200 mM KCl, 10 mM imidazole, pH 7.0. According to AFM data, skeletal muscle titin formed amorphous aggregates of different morphology in the above two solutions. Amorphous aggregates of titin formed in a solution containing glycine consisted of much larger particles than aggregates of this protein formed in a solution containing KCl. The “KCl-aggregates” according to AFM data had the form of a “sponge”-like structure, while amorphous “glycine-aggregates” of titin formed “branching” structures. Spectrofluorometry revealed the ability of titin “glycine aggregates” to bind to the dye thioflavin T (TT), and X-ray diffraction revealed the presence of one of the elements of the amyloid cross β-structure, a reflection of ~4.6 Å, in these aggregates. These data indicate that the “glycine-aggregates” of titin are amyloid or amyloid-like. No similar structural features were found in titin “KCl-aggregates”; they also did not show the ability to bind to thioflavin T, indicating the non-amyloid nature of these titin aggregates. Fourier transform infrared spectroscopy revealed differences in the secondary structure of the two types of titin aggregates. The data obtained demonstrate the features of structural changes during the formation of intermolecular bonds between molecules of the giant titin protein during its aggregation. The data expand the understanding of the process of amyloid protein aggregation.
Full Text

About the authors
L. G. Bobyleva
Institute of Theoretical and Experimental Biophysics Russian Academy of Sciences
Email: ivanvikhlyantsev@gmail.com
Russian Federation, Pushchino, Moscow Region, 142290
T. A. Uryupina
Institute of Theoretical and Experimental Biophysics Russian Academy of Sciences
Email: ivanvikhlyantsev@gmail.com
Russian Federation, Pushchino, Moscow Region, 142290
N. V. Penkov
Institute of Cell Biophysics Russian Academy of Sciences
Email: ivanvikhlyantsev@gmail.com
Russian Federation, Pushchino, Moscow Region, 142290
M. A. Timchenko
Institute of Theoretical and Experimental Biophysics Russian Academy of Sciences
Email: ivanvikhlyantsev@gmail.com
Russian Federation, Pushchino, Moscow Region, 142290
A. D. Ulanova
Institute of Theoretical and Experimental Biophysics Russian Academy of Sciences
Email: ivanvikhlyantsev@gmail.com
Russian Federation, Pushchino, Moscow Region, 142290
A. G. Gabdulkhakov
Institute of Protein Research Russian Academy of Sciences
Email: ivanvikhlyantsev@gmail.com
Russian Federation, Pushchino, Moscow Region, 142290
I. M. Vikhlyantsev
Institute of Theoretical and Experimental Biophysics Russian Academy of Sciences
Author for correspondence.
Email: ivanvikhlyantsev@gmail.com
Russian Federation, Pushchino, Moscow Region, 142290
A. G. Bobylev
Institute of Theoretical and Experimental Biophysics Russian Academy of Sciences
Email: bobylev1982@gmail.com
Russian Federation, Pushchino, Moscow Region, 142290
References
- Tsytlonok M., Craig P.O., Sivertsson E., Serquera D., Perrett S., Best R.B., Wolynes P.G., Itzhaki L.S. (2013) Complex energy landscape of a giant repeat protein. Structure. 21(11), 1954–1965. doi: 10.1016/j.str.2013.08.028
- Tian P., Best R.B. (2016) Best structural determinants of misfolding in multidomain proteins. PLoS Comput. Biol. 12(5), e1004933. doi: 10.1371/journal.pcbi.1004933
- Dobson C.M. (2003) Protein folding and misfolding. Nature. 426(6968), 884–890. doi: 10.1038/nature02261
- Rousseau F., Schymkowitz J., Itzhaki L.S. (2012) Implications of 3D domain swapping for protein folding, misfolding and function. Adv. Exp. Med. Biol. 747, 137–152. doi: 10.1007/978-1-4614-3229-6_9
- Knowles T.P., Vendruscolo M., Dobson C.M. (2014) The amyloid state and its association with protein misfolding diseases. Nat. Rev. Mol. Cell Biol. 15(6), 384–396. doi: 10.1038/nrm3810
- Dobson C.M. (2004) Experimental investigation of protein folding and misfolding. Methods. 34(1), 4–14. doi: 10.1016/j.ymeth.2004.03.002
- Buxbaum J.N., Linke R.P. (2000) A molecular history of the amyloidosis. J. Mol. Biol. 421(2–3), 142–159. doi: 10.1016/j.jmb.2012.01.024
- Sunde M., Serpell L.C., Bartlam M., Fraser P.E., Pepys M.B., Blake C.С. (1997) Common core structure of amyloid fibrils by synchrotron X-ray diffraction. J. Mol. Biol. 273(3), 729–739. doi: 10.1006/jmbi.1997.1348
- Nelson R., Eisenberg D. (2006) Recent atomic models of amyloid fibril structure. Curr. Opin. Struct. Biol. 16(2), 260–265. doi: 10.1016/j.sbi.2006.03.007
- Olsen A., Jonsson A., Normark S. (1989) Fibronectin binding mediated by a novel class of surface organelles on Escherichia coli. Nature. 338, 652–655.doi: 10.1038/338652a0
- Rçmling U., Bian Z., Hammar M., Sierralta W.D., Normark S. (1998) Curli fibers are highly conserved between Salmonella typhimurium and Escherichia coli with respect to open structure and regulation. J. Bacteriol. 180, 722–731. doi: 10.1128/JB.180.3.722-731.1998
- Otzen D., Nielsen P.H. (2008) We find them here, we find them there: functional bacterial amyloid. Cell Mol. Life Sci. 65(6), 910–927. doi: 10.1007/s00018-007-7404-4
- Claessen D., Rink R., de Jong W., Siebring J., de Vreughd P., Boersma F.G.H., Dijkhuizen L., Wçsten H.A.B. (2003) A novel class of secreted hydrophobic proteins is involved in aerial hyphae formation in Streptomyces coelicolor by forming amyloid-like fibrils. Genes Dev. 17, 1714–1726. doi: 10.1101/gad.264303
- Si K., Lindquist S.L., Kandel E.R. (2003) A neuronal isoform of the aplysia CPEB has prion-like properties. Cell. 115, 879–891. doi: 10.1016/s0092-8674(03)01020-1
- Fowler D.M., Koulov A.V., Alory-Jost C., Marks M.S., Balch W.E., Kelly J.W. (2006) Functional amyloid formation within mammalian tissue. PLoS Biol. 4, 1–8. doi: 10.1371/journal.pbio.0040006
- Berson J.F., Theos A.C., Harper D.C., Tenza D., Raposo G., Marks M.S. (2003) Proprotein convertase cleavage liberates a fibrillogenic fragment of a resident glycoprotein to initiate melanosome biogenesis. J. Cell. Biol. 161, 521–533.
- Wang K., McClure J., Tu A. (1979) Titin: major myofibrillar components of striated muscle. Proc. Natl. Acad. Sci. USA. 76(8), 3698–3702. doi: 10.1073/pnas.76.8.3698
- Maruyama K., Kimura S., Ohashi K., Kuwano Y. (1981) Connectin, an elastic protein of muscle. Identification of “titin” with connectin. J. Biochem. 89(3), 701–709. doi: 10.1093/oxfordjournals.jbchem.a133249
- Guo W., Bharmal S.J., Esbona K., Greaser M.L. (2010) Titin diversity–alternative splicing gone wild. J. Biomed. Biotechnol. 2010, 753675. doi: 10.1155/2010/753675
- Kim K., Keller T.C. 3rd. (2002) Smitin, a novel smooth muscle titin-like protein, interacts with myosin filaments in vivo and in vitro. J. Cell. Biol. 156, 101–111. doi: 10.1083/jcb.200107037
- Greaser M.L., Warren C.M., Esbona K., Guo W., Duan Y., Parrish A.M., Krzesinski P.R., Norman H.S., Dunning S., Fitzsimons D.P., Moss R.L. (2008) Mutation that dramatically alters rat titin isoform expression and cardiomyocyte passive tension. J. Mol. Cell. Cardiol. 44(6), 983–991. doi: 10.1016/j.yjmcc.2008.02.272
- Labeit S., Lahmers S., Burkart C., Fong C., McNabb M., Witt S., Witt C., Labeit D., Granzier H. (2006) Expression of distinct classes of titin isoforms in striated and smooth muscles by alternative splicing, and their conserved interaction with filamins. J. Mol. Biol. 362(4), 664–681. doi: 10.1016/j.jmb.2006.07.077
- Granzier H.L., Irving T.C. (1995) Passive tension in cardiac muscle: contribution of collagen, titin, microtubules, and intermediate filaments. Biophys. J. 68(3), 1027–1044. doi: 10.1016/s0006-3495(95)80278-x
- Linke W. (2008) Sense and stretchability: the role of titin and titin-associated proteins in myocardial stress-sensing and mechanical dysfunction. Cardiovasc. Res. 77(4), 637–648. doi: 10.1016/j.cardiores.2007.03.029
- Tskhovrebova L., Trinick J. (2010) Roles of titin in the structure and elasticity of the sarcomere. J. Biomed. Biotechnol. 2010, 612482. doi: 10.1155/2010/612482
- Gautel M. (2011b) The sarcomeric cytoskeleton: who picks up the strain? Curr. Opin. Cell Biol. 23(1), 39–46. doi: 10.1016/j.ceb.2010.12.001
- Bobylev A.G., Galzitskaya O.V., Fadeev R.S., Bobyleva L.G., Yurshenas D.A., Molochkov N.V., Dovidchenko N.V., Selivanova O.M., Penkov N.V., Podlubnaya Z.A., Vikhlyantsev I.M. (2016) Smooth muscle titin forms in vitro amyloid aggregates. Biosci. Rep. 36(3), e00334. doi: 10.1042/BSR20160066
- Yakupova E.I., Vikhlyantsev I.M., Bobyleva L.G., Penkov N.V., Timchenko A.A., Timchenko M.A., Enin G.A., Khutzian S.S., Selivanova O.M., Bobylev A.G. (2018) Different amyloid aggregation of smooth muscles titin in vitro. J. Biomol. Struct. Dyn. 36(9), 2237–2248. doi: 10.1080/07391102.2017.1348988
- Bobylev A.G., Fadeev R.S., Bobyleva L.G., Kobyakova M.I., Shlyapnikov Y.M., Popov D.V., Vikhlyantsev I.M. (2021) Amyloid aggregates of smooth-muscle titin impair cell adhesion. Int. J. Mol. Sci. 22(9), 4579. doi: 10.3390/ijms22094579
- Soteriou A., Gamage M., Trinick J. (1993) A survey of interactions made by the giant protein titin. J. Cell Sci. 104(Pt 1), 119–123. doi: 10.1242/jcs.104.1.119
- Trinick J., Knight P., Whiting A. (1984) Purification and properties of native titin. J. Mol. Biol. 180(2), 331–356. doi: 10.1016/s0022-2836(84)80007-8
- Vikhlyantsev I.M., Podlubnaya Z.A. (2017) Nuances of electrophoresis study of titin/connectin. Biophys. Rev. 9(3), 189–199. doi: 10.1007/s12551-017-0266-6
- Fritz J.D., Swartz D.R., Greaser M.L. (1989) Factors affecting polyacrilamide gel electrophoresis and electroblotting of high-molecular-weight myofibrillar proteins. Analyt. Biochem. 180(2), 205–210. doi: 10.1016/0003-2697(89)90116-4
- Towbin H., Staehelin T., Gordon J. (1989) Immunoblotting in the clinical laboratory. J. Clin. Chem. Clin. Biochem. 27(8), 495–501.
- Venyaminov S., Prendergast F.G. (1997) Water (H2O and D2O) molar absorptivity in the 1000–4000 cm-1 range and quantitative infrared spectroscopy of aqueous solutions. Anal. Biochem. 248(2), 234–245. doi: 10.1006/abio.1997.2136
- Venyaminov S.Y., Kalnin N.N. (1990) Quantitative IR spectrophotometry of peptide compounds in water (H2O) solutions. II. Amide absorption bands of polypeptides and fibrous proteins in α-, β-, and random coil conformations. Biopolymers. 30, 1259–1271. doi: 10.1002/bip.360301310
- Makin O.S., Serpell L.C. (2005) Structures for amyloid fibrils. FEBS J. 272(23), 5950–5961. doi: 10.1111/j.1742-4658.2005.05025.x
- Astbury W.T., Dickinson S., Bailey K. (1935) The X-ray diffraction interpretation of denaturation and the structure of seed globulins. Biochem. J. 29(10), 2351–2360. doi: 10.1042/bj0292351
- Eanes E.D., Glenner G.G. (1968) X-ray diffraction studies on amyloid filaments J. Histochem. Cytochem. 16(11), 673–677. doi: 10.1177/16.11.673
- Jahn T.R., Makin O.S., Morris K.L., Marshall K.E., Tian P., Sikorski P., Serpell L.C. (2010) The common architecture of cross-beta amyloid. J. Mol. Biol. 395(4), 717–727. doi: 10.1016/j.jmb.2009.09.039
- Dogra P., Bhattacharya M., Mukhopadhyay S. (2017) pH-Responsive mechanistic switch regulates the formation of dendritic and fibrillar nanostructures of a functional amyloid. J. Phys. Chem. B. 121(2), 412–419. doi: 10.1021/acs.jpcb.6b11281
- Serpell L.C., Berriman J., Jakes R., Goedert M., Crowther R.A. (2000) Fiber diffraction of synthetic alpha-synuclein filaments shows amyloid-like cross-beta conformation. Proc. Natl. Acad. Sci. USA. 97(9), 4897–4902. doi: 10.1073/pnas.97.9.4897
- Бобылёв А.Г., Якупова Э.И., Бобылёва Л.Г., Галзитская О.В., Никулин А.Д., Шумейко С.А., Юршенас Д.А., Вихлянцев И.М. (2020) Изменения структуры титина при его агрегации. Молекуляр. биология. 54(4), 643–652. doi: 10.31857/S0026898420040047
- Zandomeneghi G., Krebs M.R., McCammon M.G., Fändrich M. (2004) FTIR reveals structural differences between native beta-sheet proteins and amyloid fibrils. Protein Sci. 13(12), 3314–3321. doi: 10.1110/ps.041024904
- Borgia A., Kemplen K.R., Borgia M.B., Soranno A., Shammas S., Wunderlich B., Nettels D., Best R.B., Clarke J., Schuler B. (2015) Transient misfolding dominates multidomain protein folding. Nat. Commun. 6(8861), 8861. doi: 10.1038/ncomms9861
Supplementary files
