Structural features of skeletal muscle titin aggregates

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Titin is a multidomain protein of striated and smooth muscles of vertebrates. The protein consists of repeating immunoglobulin-like (Ig) and fibronectin-like (FnIII) domains, which are β-sandwiches with a predominant β-structure, and also contains disordered regions. In this work, the methods of atomic force microscopy (AFM), X-ray diffraction and Fourier transform infrared spectroscopy were used to study the morphology and structure of aggregates of rabbit skeletal muscle titin obtained in two different solutions: 0.15 M glycine-KOH, pH 7.0 and 200 mM KCl, 10 mM imidazole, pH 7.0. According to AFM data, skeletal muscle titin formed amorphous aggregates of different morphology in the above two solutions. Amorphous aggregates of titin formed in a solution containing glycine consisted of much larger particles than aggregates of this protein formed in a solution containing KCl. The “KCl-aggregates” according to AFM data had the form of a “sponge”-like structure, while amorphous “glycine-aggregates” of titin formed “branching” structures. Spectrofluorometry revealed the ability of titin “glycine aggregates” to bind to the dye thioflavin T (TT), and X-ray diffraction revealed the presence of one of the elements of the amyloid cross β-structure, a reflection of ~4.6 Å, in these aggregates. These data indicate that the “glycine-aggregates” of titin are amyloid or amyloid-like. No similar structural features were found in titin “KCl-aggregates”; they also did not show the ability to bind to thioflavin T, indicating the non-amyloid nature of these titin aggregates. Fourier transform infrared spectroscopy revealed differences in the secondary structure of the two types of titin aggregates. The data obtained demonstrate the features of structural changes during the formation of intermolecular bonds between molecules of the giant titin protein during its aggregation. The data expand the understanding of the process of amyloid protein aggregation.

Full Text

Restricted Access

About the authors

L. G. Bobyleva

Institute of Theoretical and Experimental Biophysics Russian Academy of Sciences

Email: ivanvikhlyantsev@gmail.com
Russian Federation, Pushchino, Moscow Region, 142290

T. A. Uryupina

Institute of Theoretical and Experimental Biophysics Russian Academy of Sciences

Email: ivanvikhlyantsev@gmail.com
Russian Federation, Pushchino, Moscow Region, 142290

N. V. Penkov

Institute of Cell Biophysics Russian Academy of Sciences

Email: ivanvikhlyantsev@gmail.com
Russian Federation, Pushchino, Moscow Region, 142290

M. A. Timchenko

Institute of Theoretical and Experimental Biophysics Russian Academy of Sciences

Email: ivanvikhlyantsev@gmail.com
Russian Federation, Pushchino, Moscow Region, 142290

A. D. Ulanova

Institute of Theoretical and Experimental Biophysics Russian Academy of Sciences

Email: ivanvikhlyantsev@gmail.com
Russian Federation, Pushchino, Moscow Region, 142290

A. G. Gabdulkhakov

Institute of Protein Research Russian Academy of Sciences

Email: ivanvikhlyantsev@gmail.com
Russian Federation, Pushchino, Moscow Region, 142290

I. M. Vikhlyantsev

Institute of Theoretical and Experimental Biophysics Russian Academy of Sciences

Author for correspondence.
Email: ivanvikhlyantsev@gmail.com
Russian Federation, Pushchino, Moscow Region, 142290

A. G. Bobylev

Institute of Theoretical and Experimental Biophysics Russian Academy of Sciences

Email: bobylev1982@gmail.com
Russian Federation, Pushchino, Moscow Region, 142290

References

  1. Tsytlonok M., Craig P.O., Sivertsson E., Serquera D., Perrett S., Best R.B., Wolynes P.G., Itzhaki L.S. (2013) Complex energy landscape of a giant repeat protein. Structure. 21(11), 1954–1965. doi: 10.1016/j.str.2013.08.028
  2. Tian P., Best R.B. (2016) Best structural determinants of misfolding in multidomain proteins. PLoS Comput. Biol. 12(5), e1004933. doi: 10.1371/journal.pcbi.1004933
  3. Dobson C.M. (2003) Protein folding and misfolding. Nature. 426(6968), 884–890. doi: 10.1038/nature02261
  4. Rousseau F., Schymkowitz J., Itzhaki L.S. (2012) Implications of 3D domain swapping for protein folding, misfolding and function. Adv. Exp. Med. Biol. 747, 137–152. doi: 10.1007/978-1-4614-3229-6_9
  5. Knowles T.P., Vendruscolo M., Dobson C.M. (2014) The amyloid state and its association with protein misfolding diseases. Nat. Rev. Mol. Cell Biol. 15(6), 384–396. doi: 10.1038/nrm3810
  6. Dobson C.M. (2004) Experimental investigation of protein folding and misfolding. Methods. 34(1), 4–14. doi: 10.1016/j.ymeth.2004.03.002
  7. Buxbaum J.N., Linke R.P. (2000) A molecular history of the amyloidosis. J. Mol. Biol. 421(2–3), 142–159. doi: 10.1016/j.jmb.2012.01.024
  8. Sunde M., Serpell L.C., Bartlam M., Fraser P.E., Pepys M.B., Blake C.С. (1997) Common core structure of amyloid fibrils by synchrotron X-ray diffraction. J. Mol. Biol. 273(3), 729–739. doi: 10.1006/jmbi.1997.1348
  9. Nelson R., Eisenberg D. (2006) Recent atomic models of amyloid fibril structure. Curr. Opin. Struct. Biol. 16(2), 260–265. doi: 10.1016/j.sbi.2006.03.007
  10. Olsen A., Jonsson A., Normark S. (1989) Fibronectin binding mediated by a novel class of surface organelles on Escherichia coli. Nature. 338, 652–655.doi: 10.1038/338652a0
  11. Rçmling U., Bian Z., Hammar M., Sierralta W.D., Normark S. (1998) Curli fibers are highly conserved between Salmonella typhimurium and Escherichia coli with respect to open structure and regulation. J. Bacteriol. 180, 722–731. doi: 10.1128/JB.180.3.722-731.1998
  12. Otzen D., Nielsen P.H. (2008) We find them here, we find them there: functional bacterial amyloid. Cell Mol. Life Sci. 65(6), 910–927. doi: 10.1007/s00018-007-7404-4
  13. Claessen D., Rink R., de Jong W., Siebring J., de Vreughd P., Boersma F.G.H., Dijkhuizen L., Wçsten H.A.B. (2003) A novel class of secreted hydrophobic proteins is involved in aerial hyphae formation in Streptomyces coelicolor by forming amyloid-like fibrils. Genes Dev. 17, 1714–1726. doi: 10.1101/gad.264303
  14. Si K., Lindquist S.L., Kandel E.R. (2003) A neuronal isoform of the aplysia CPEB has prion-like properties. Cell. 115, 879–891. doi: 10.1016/s0092-8674(03)01020-1
  15. Fowler D.M., Koulov A.V., Alory-Jost C., Marks M.S., Balch W.E., Kelly J.W. (2006) Functional amyloid formation within mammalian tissue. PLoS Biol. 4, 1–8. doi: 10.1371/journal.pbio.0040006
  16. Berson J.F., Theos A.C., Harper D.C., Tenza D., Raposo G., Marks M.S. (2003) Proprotein convertase cleavage liberates a fibrillogenic fragment of a resident glycoprotein to initiate melanosome biogenesis. J. Cell. Biol. 161, 521–533.
  17. Wang K., McClure J., Tu A. (1979) Titin: major myofibrillar components of striated muscle. Proc. Natl. Acad. Sci. USA. 76(8), 3698–3702. doi: 10.1073/pnas.76.8.3698
  18. Maruyama K., Kimura S., Ohashi K., Kuwano Y. (1981) Connectin, an elastic protein of muscle. Identification of “titin” with connectin. J. Biochem. 89(3), 701–709. doi: 10.1093/oxfordjournals.jbchem.a133249
  19. Guo W., Bharmal S.J., Esbona K., Greaser M.L. (2010) Titin diversity–alternative splicing gone wild. J. Biomed. Biotechnol. 2010, 753675. doi: 10.1155/2010/753675
  20. Kim K., Keller T.C. 3rd. (2002) Smitin, a novel smooth muscle titin-like protein, interacts with myosin filaments in vivo and in vitro. J. Cell. Biol. 156, 101–111. doi: 10.1083/jcb.200107037
  21. Greaser M.L., Warren C.M., Esbona K., Guo W., Duan Y., Parrish A.M., Krzesinski P.R., Norman H.S., Dunning S., Fitzsimons D.P., Moss R.L. (2008) Mutation that dramatically alters rat titin isoform expression and cardiomyocyte passive tension. J. Mol. Cell. Cardiol. 44(6), 983–991. doi: 10.1016/j.yjmcc.2008.02.272
  22. Labeit S., Lahmers S., Burkart C., Fong C., McNabb M., Witt S., Witt C., Labeit D., Granzier H. (2006) Expression of distinct classes of titin isoforms in striated and smooth muscles by alternative splicing, and their conserved interaction with filamins. J. Mol. Biol. 362(4), 664–681. doi: 10.1016/j.jmb.2006.07.077
  23. Granzier H.L., Irving T.C. (1995) Passive tension in cardiac muscle: contribution of collagen, titin, microtubules, and intermediate filaments. Biophys. J. 68(3), 1027–1044. doi: 10.1016/s0006-3495(95)80278-x
  24. Linke W. (2008) Sense and stretchability: the role of titin and titin-associated proteins in myocardial stress-sensing and mechanical dysfunction. Cardiovasc. Res. 77(4), 637–648. doi: 10.1016/j.cardiores.2007.03.029
  25. Tskhovrebova L., Trinick J. (2010) Roles of titin in the structure and elasticity of the sarcomere. J. Biomed. Biotechnol. 2010, 612482. doi: 10.1155/2010/612482
  26. Gautel M. (2011b) The sarcomeric cytoskeleton: who picks up the strain? Curr. Opin. Cell Biol. 23(1), 39–46. doi: 10.1016/j.ceb.2010.12.001
  27. Bobylev A.G., Galzitskaya O.V., Fadeev R.S., Bobyleva L.G., Yurshenas D.A., Molochkov N.V., Dovidchenko N.V., Selivanova O.M., Penkov N.V., Podlubnaya Z.A., Vikhlyantsev I.M. (2016) Smooth muscle titin forms in vitro amyloid aggregates. Biosci. Rep. 36(3), e00334. doi: 10.1042/BSR20160066
  28. Yakupova E.I., Vikhlyantsev I.M., Bobyleva L.G., Penkov N.V., Timchenko A.A., Timchenko M.A., Enin G.A., Khutzian S.S., Selivanova O.M., Bobylev A.G. (2018) Different amyloid aggregation of smooth muscles titin in vitro. J. Biomol. Struct. Dyn. 36(9), 2237–2248. doi: 10.1080/07391102.2017.1348988
  29. Bobylev A.G., Fadeev R.S., Bobyleva L.G., Kobyakova M.I., Shlyapnikov Y.M., Popov D.V., Vikhlyantsev I.M. (2021) Amyloid aggregates of smooth-muscle titin impair cell adhesion. Int. J. Mol. Sci. 22(9), 4579. doi: 10.3390/ijms22094579
  30. Soteriou A., Gamage M., Trinick J. (1993) A survey of interactions made by the giant protein titin. J. Cell Sci. 104(Pt 1), 119–123. doi: 10.1242/jcs.104.1.119
  31. Trinick J., Knight P., Whiting A. (1984) Purification and properties of native titin. J. Mol. Biol. 180(2), 331–356. doi: 10.1016/s0022-2836(84)80007-8
  32. Vikhlyantsev I.M., Podlubnaya Z.A. (2017) Nuances of electrophoresis study of titin/connectin. Biophys. Rev. 9(3), 189–199. doi: 10.1007/s12551-017-0266-6
  33. Fritz J.D., Swartz D.R., Greaser M.L. (1989) Factors affecting polyacrilamide gel electrophoresis and electroblotting of high-molecular-weight myofibrillar proteins. Analyt. Biochem. 180(2), 205–210. doi: 10.1016/0003-2697(89)90116-4
  34. Towbin H., Staehelin T., Gordon J. (1989) Immunoblotting in the clinical laboratory. J. Clin. Chem. Clin. Biochem. 27(8), 495–501.
  35. Venyaminov S., Prendergast F.G. (1997) Water (H2O and D2O) molar absorptivity in the 1000–4000 cm-1 range and quantitative infrared spectroscopy of aqueous solutions. Anal. Biochem. 248(2), 234–245. doi: 10.1006/abio.1997.2136
  36. Venyaminov S.Y., Kalnin N.N. (1990) Quantitative IR spectrophotometry of peptide compounds in water (H2O) solutions. II. Amide absorption bands of polypeptides and fibrous proteins in α-, β-, and random coil conformations. Biopolymers. 30, 1259–1271. doi: 10.1002/bip.360301310
  37. Makin O.S., Serpell L.C. (2005) Structures for amyloid fibrils. FEBS J. 272(23), 5950–5961. doi: 10.1111/j.1742-4658.2005.05025.x
  38. Astbury W.T., Dickinson S., Bailey K. (1935) The X-ray diffraction interpretation of denaturation and the structure of seed globulins. Biochem. J. 29(10), 2351–2360. doi: 10.1042/bj0292351
  39. Eanes E.D., Glenner G.G. (1968) X-ray diffraction studies on amyloid filaments J. Histochem. Cytochem. 16(11), 673–677. doi: 10.1177/16.11.673
  40. Jahn T.R., Makin O.S., Morris K.L., Marshall K.E., Tian P., Sikorski P., Serpell L.C. (2010) The common architecture of cross-beta amyloid. J. Mol. Biol. 395(4), 717–727. doi: 10.1016/j.jmb.2009.09.039
  41. Dogra P., Bhattacharya M., Mukhopadhyay S. (2017) pH-Responsive mechanistic switch regulates the formation of dendritic and fibrillar nanostructures of a functional amyloid. J. Phys. Chem. B. 121(2), 412–419. doi: 10.1021/acs.jpcb.6b11281
  42. Serpell L.C., Berriman J., Jakes R., Goedert M., Crowther R.A. (2000) Fiber diffraction of synthetic alpha-synuclein filaments shows amyloid-like cross-beta conformation. Proc. Natl. Acad. Sci. USA. 97(9), 4897–4902. doi: 10.1073/pnas.97.9.4897
  43. Бобылёв А.Г., Якупова Э.И., Бобылёва Л.Г., Галзитская О.В., Никулин А.Д., Шумейко С.А., Юршенас Д.А., Вихлянцев И.М. (2020) Изменения структуры титина при его агрегации. Молекуляр. биология. 54(4), 643–652. doi: 10.31857/S0026898420040047
  44. Zandomeneghi G., Krebs M.R., McCammon M.G., Fändrich M. (2004) FTIR reveals structural differences between native beta-sheet proteins and amyloid fibrils. Protein Sci. 13(12), 3314–3321. doi: 10.1110/ps.041024904
  45. Borgia A., Kemplen K.R., Borgia M.B., Soranno A., Shammas S., Wunderlich B., Nettels D., Best R.B., Clarke J., Schuler B. (2015) Transient misfolding dominates multidomain protein folding. Nat. Commun. 6(8861), 8861. doi: 10.1038/ncomms9861

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. SDS gel electrophoresis and Western blotting of rabbit skeletal muscle titin. a – SDS-EP of purified titin preparation (two right lanes). Left lane – rabbit soleus m. (control). Electrophoresis was performed in 7% polyacrylamide gel. Bands of actin, myosin heavy chains (MHC), nebulin and titin are indicated. b – Western blotting of titin using AB5 monoclonal antibodies. Electrophoresis was performed in 2.2% polyacrylamide gel reinforced with agarose. Left lane – rabbit soleus m. (control). Two right lanes – purified titin preparations. c – SDS-EF in 7% polyacrylamide gel of purified titin preparation (lane on the left) and Western blotting of titin using monoclonal antibody 9D10 (lane on the right). T1 – full-length titin molecules located in the sarcomere from the M-line to the Z-disk. T2 – fragments of titin-1 located in the A-disk of the sarcomere along the myosin filaments.

Download (134KB)
3. Fig. 2. Atomic force microscopy of titin aggregates. a – Atomic force microscopy of titin aggregates in a 0.15 M glycine-KOH solution, pH 7.0; squares 50 and 10 μm2. b – Atomic force microscopy of titin aggregates in a 200 mM KCl solution, 10 mM imidazole, pH 7.0; squares 10 and 4.5 μm2. Aggregate formation time at 4 °C – 24 h.

Download (322KB)
4. Fig. 3. a – Intensity of TT fluorescence in the presence of titin and aggregates of this protein formed over 24 h in solutions containing 0.15 M glycine-KOH, pH 7.0 (4, purple) and 200 mM KCl, 10 mM imidazole, pH 7.0 (2, green). Red (3) – intensity of TT fluorescence in the presence of the molecular form of titin; b – FTIR spectra of titin and its aggregates at 20 °C. Protein concentration is 36–42 mg/ml. Non-aggregated skeletal muscle titin (1, black). Aggregates of skeletal muscle titin formed in a solution of 200 mM KCl, 10 mM imidazole, pH 7.0 (2, red). Aggregates of skeletal muscle titin formed in 0.15 M glycine-KOH solution, pH 7.0 (3, green).

Download (171KB)
5. Fig. 4. X-ray diffraction of titin aggregates from rabbit skeletal muscles after 24 h of aggregation. a – X-ray diffraction pattern of amorphous titin aggregates formed in a solution containing 0.15 M glycine-KOH, pH 7.0. The following reflections were found: 5.9; 4.6; 4.3; 3.8; 3.6; 3.1; 3.04; 2.97; 2.8; 2.6; 2.53; 2.43 Å. The reflection ~4.6 Å refers to the element of the cross-β-structure and characterizes the distance between the polypeptide chains; b – X-ray diffraction pattern of amorphous titin aggregates formed in a solution containing 200 mM KCl, 10 mM imidazole, pH 7.0. The following reflections were found: 18.5; 12.5; 4.1; 3.7; 2.9; 2.48 Å.

Download (185KB)

Copyright (c) 2024 Russian Academy of Sciences