Assessment of cytotoxicity of 5-arylaminouracil derivatives
- 作者: Kezin V.A.1, Matyugina E.S.1, Surzhikov S.A.1, Novikov M.S.2, Maslova A.A.1, Karpenko I.L.1, Ivanov A.V.1, Kochetkov S.N.1, Khandazhinskaya A.L.1
-
隶属关系:
- Engelhardt Institute of Molecular Biology Russian Academy of Sciences
- Volgograd State Medical University
- 期: 卷 58, 编号 2 (2024)
- 页面: 325-332
- 栏目: СТРУКТУРНО-ФУНКЦИОНАЛЬНЫЙ АНАЛИЗ БИОПОЛИМЕРОВИ ИХ КОМПЛЕКСОВ
- URL: https://innoscience.ru/0026-8984/article/view/655336
- DOI: https://doi.org/10.31857/S0026898424020156
- EDN: https://elibrary.ru/MYDBYJ
- ID: 655336
如何引用文章
详细
We have previously shown that 5-arylaminouracil derivatives can inhibit HIV-1, herpesviruses, mycobacteria and other pathogens through various mechanisms. The purpose of this study was to evaluate the potential of 5-arylaminouracils and their derivatives against leukemia, neuroblastoma and glial brain tumors. The cytotoxicity of 5-aminouracils with various substituents, as well as their 5’-norcabocyclic and ribo derivatives, was screened against two neuroblastoma cell lines (SH-SY5Y and IMR-32), lymphoblastic cells K-562, promyeoloblastic cells HL-60 and low-passage variants of well-differentiated glioblastoma multiforme (GBM5522 and GBM6138). As a result of assessing the cytotoxicity of the resulting compounds on the above cell lines using the standard MTT test, it was revealed that most of the compounds do not have significant toxicity. However, in the GBM-6138 cell line, 5-(4-isopropylphenylamine)uracil and 5-(4-tert-butylphenylamine)uracil exhibited a dose-dependent toxic effect, with half-maximal inhibition concentrations IC50 of 9 μM and 2.3 μM, respectively. The antitumor activity of compounds of this type has been demonstrated for the first time and can serve as a starting point for further research.
全文:

作者简介
V. Kezin
Engelhardt Institute of Molecular Biology Russian Academy of Sciences
Email: khandazhinskaya@bk.ru
俄罗斯联邦, Moscow, 119991
E. Matyugina
Engelhardt Institute of Molecular Biology Russian Academy of Sciences
Email: khandazhinskaya@bk.ru
俄罗斯联邦, Moscow, 119991
S. Surzhikov
Engelhardt Institute of Molecular Biology Russian Academy of Sciences
Email: khandazhinskaya@bk.ru
俄罗斯联邦, Moscow, 119991
M. Novikov
Volgograd State Medical University
Email: khandazhinskaya@bk.ru
俄罗斯联邦, Volgograd, 400131
A. Maslova
Engelhardt Institute of Molecular Biology Russian Academy of Sciences
Email: khandazhinskaya@bk.ru
俄罗斯联邦, Moscow, 119991
I. Karpenko
Engelhardt Institute of Molecular Biology Russian Academy of Sciences
Email: khandazhinskaya@bk.ru
俄罗斯联邦, Moscow, 119991
A. Ivanov
Engelhardt Institute of Molecular Biology Russian Academy of Sciences
Email: khandazhinskaya@bk.ru
俄罗斯联邦, Moscow, 119991
S. Kochetkov
Engelhardt Institute of Molecular Biology Russian Academy of Sciences
Email: khandazhinskaya@bk.ru
俄罗斯联邦, Moscow, 119991
A. Khandazhinskaya
Engelhardt Institute of Molecular Biology Russian Academy of Sciences
编辑信件的主要联系方式.
Email: khandazhinskaya@bk.ru
俄罗斯联邦, Moscow, 119991
参考
- Kantarjian H., Kadia T., DiNardo C., Daver N., Borthakur G., Jabbour E., Garcia-Manero G., Konopleva M., Ravandi F. (2021) Acute myeloid leukemia: current progress and future directions. Blood Cancer J. 11, 41. https://doi.org/10.1038/s41408-021-00425-3
- Matthay K.K., Maris J.M., Schleiermacher G., Nakagawara A., Mackall C.L., Diller L., Weiss W.A. (2016) Neuroblastoma. Nat. Rev. Dis. Primers. 2, 16078. https://doi.org/10.1038/nrdp.2016.78
- Koshy M., Villano J.L., Dolecek T.A., Howard A., Mahmood U., Chmura S.J., Weichselbaum R.R., McCarthy B.J. (2012) Improved survival time trends for glioblastoma using the SEER 17 population-based registries. J. Neurooncol. 107, 207–212. https://doi.org/10.1007/s11060-011-0738-7
- Stupp R., Mason W.P., van den Bent M.J., Weller M., Fisher B., Taphoorn M.J., Belanger K., Brandes A.A., Marosi C., Bogdahn U., Curschmann J., Janzer R.C., Ludwin S.K., Gorlia T., Allgeier A., Lacombe D., Cairncross J.G., Eisenhauer E., Mirimanoff R.O., European Organisation for R., Treatment of Cancer Brain T., Radiotherapy G., National Cancer Institute of Canada Clinical Trials G. (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 352, 987–996. https://doi.org/10.1056/NEJMoa043330
- Tan A.C., Ashley D.M., Lopez G.Y., Malinzak M., Friedman H.S., Khasraw M. (2020) Management of glioblastoma: state of the art and future directions. CA Cancer J. Clin. 70, 299–312. https://doi.org/10.3322/caac.21613
- Vijayaraghavalu S., Dermawan J.K., Cheriyath V., Labhasetwar V. (2013) Highly synergistic effect of sequential treatment with epigenetic and anticancer drugs to overcome drug resistance in breast cancer cells is mediated via activation of p21 gene expression leading to G2/M cycle arrest. Mol. Pharm. 10, 337–352. https://doi.org/10.1021/mp3004622
- Housman G., Byler S., Heerboth S., Lapinska K., Longacre M., Snyder N., Sarkar S. (2014) Drug resistance in cancer: an overview. Cancers (Basel). 6, 1769–1792. https://doi.org/10.3390/cancers6031769
- Qiu T., Zhou L., Zhu W., Wang T., Wang J., Shu Y., Liu P. (2013) Effects of treatment with histone deacetylase inhibitors in solid tumors: a review based on 30 clinical trials. Future Oncol. 9, 255–269. https://doi.org/10.2217/fon.12.173
- Tyner J.W., Tognon C.E., Bottomly D., Wilmot B., Kurtz S.E., Savage S.L., Long N., Schultz A.R., Traer E., Abel M., Agarwal A., Blucher A., Borate U., Bryant J., Burke R., Carlos A., Carpenter R., Carroll J., Chang B.H., Coblentz C., d’Almeida A., Cook R., Danilov A., Dao K.T., Degnin M., Devine D., Dibb J., Edwards D.K. 5th., Eide C.A., English I., Glover J., Henson R., Ho H., Jemal A., Johnson K., Johnson R., Junio B., Kaempf A., Leonard J., Lin C., Liu S.Q., Lo P., Loriaux M.M., Luty S., Macey T., MacManiman J., Martinez J., Mori M., Nelson D., Nichols C., Peters J., Ramsdill J., Rofelty A., Schuff R., Searles R., Segerdell E., Smith R.L., Spurgeon S.E., Sweeney T., Thapa A., Visser C., Wagner J., Watanabe-Smith K., Werth K., Wolf J., White L., Yates A., Zhang H., Cogle C.R., Collins R.H., Connolly D.C., Deininger M.W., Drusbosky L., Hourigan C.S., Jordan C.T., Kropf P., Lin T.L., Martinez M.E., Medeiros B.C., Pallapati R.R., Pollyea D.A., Swords R.T., Watts J.M., Weir S.J., Wiest D.L., Winters R.M., McWeeney S.K., Druker B.J. (2018) Functional genomic landscape of acute myeloid leukaemia. Nature. 562, 526–531. https://doi.org/10.1038/s41586-018-0623-z
- Patel J.P., Gonen M., Figueroa M.E., Fernandez H., Sun Z., Racevskis J., Van Vlierberghe P., Dolgalev I., Thomas S., Aminova O., Huberman K., Cheng J., Viale A., Socci N.D., Heguy A., Cherry A., Vance G., Higgins R.R., Ketterling R.P., Gallagher R.E., Litzow M., van den Brink M.R., Lazarus H.M., Rowe J.M., Luger S., Ferrando A., Paietta E., Tallman M.S., Melnick A., Abdel-Wahab O., Levine R.L. (2012) Prognostic relevance of integrated genetic profiling in acute myeloid leukemia. N. Engl. J. Med. 366, 1079–1089. https://doi.org/10.1056/NEJMoa1112304
- Papaemmanuil E., Gerstung M., Bullinger L., Gaidzik V.I., Paschka P., Roberts N.D., Potter N.E., Heuser M., Thol F., Bolli N., Gundem G., Van Loo P., Martincorena I., Ganly P., Mudie L., McLaren S., O’Meara S., Raine K., Jones D.R., Teague J.W., Butler A.P., Greaves M.F., Ganser A., Dohner K., Schlenk R.F., Dohner H., Campbell P.J. (2016) Genomic classification and prognosis in acute myeloid leukemia. N. Engl. J. Med. 374, 2209–2221. https://doi.org/10.1056/NEJMoa1516192
- Cancer Genome Atlas Research N., Ley T.J., Miller C., Ding L., Raphael B.J., Mungall A.J., Robertson A., Hoadley K., Triche T.J. Jr., Laird P.W., Baty J.D., Fulton L.L., Fulton R., Heath S.E., Kalicki-Veizer J., Kandoth C., Klco J.M., Koboldt D.C., Kanchi K.L., Kulkarni S., Lamprecht T.L., Larson D.E., Lin L., Lu C., McLellan M.D., McMichael J.F., Payton J., Schmidt H., Spencer D.H., Tomasson M.H., Wallis J.W., Wartman L.D., Watson M.A., Welch J., Wendl M.C., Ally A., Balasundaram M., Birol I., Butterfield Y., Chiu R., Chu A., Chuah E., Chun H.J., Corbett R., Dhalla N., Guin R., He A., Hirst C., Hirst M., Holt R.A., Jones S., Karsan A., Lee D., Li H.I., Marra M.A., Mayo M., Moore R.A., Mungall K., Parker J., Pleasance E., Plettner P., Schein J., Stoll D., Swanson L., Tam A., Thiessen N., Varhol R., Wye N., Zhao Y., Gabriel S., Getz G., Sougnez C., Zou L., Leiserson M.D., Vandin F., Wu H.T., Applebaum F., Baylin S.B., Akbani R., Broom B.M., Chen K., Motter T.C., Nguyen K., Weinstein J.N., Zhang N., Ferguson M.L., Adams C., Black A., Bowen J., Gastier-Foster J., Grossman T., Lichtenberg T., Wise L., Davidsen T., Demchok J.A., Shaw K.R., Sheth M., Sofia H.J., Yang L., Downing J.R., Eley G. (2013) Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N. Engl. J. Med. 368, 2059–2074. https://doi.org/10.1056/NEJMoa1301689
- Christman J.K. (2002) 5-Azacytidine and 5-aza-2’-deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy. Oncogene. 21, 5483–5495. https://doi.org/10.1038/sj.onc.1205699
- Estey E.H. (2013) Epigenetics in clinical practice: the examples of azacitidine and decitabine in myelodysplasia and acute myeloid leukemia. Leukemia. 27, 1803–1812. https://doi.org/10.1038/leu.2013.173
- Bartolucci S., Estenoz M., Longo A., Santoro B., Momparler R.L., Rossi M., Augusti-Tocco G. (1989) 5-Aza-2’-deoxycytidine as inducer of differentiation and growth inhibition in mouse neuroblastoma cells. Cell Differ Dev. 27, 47–55. https://doi.org/10.1016/0922-3371(89)90043-9
- Carpinelli P., Granata F., Augusti-Tocco G., Rossi M., Bartolucci S. (1993) Antiproliferative effects and DNA hypomethylation by 5-aza-2’-deoxycytidine in human neuroblastoma cell lines. Anticancer Drugs. 4, 629–635. https://doi.org/10.1097/00001813-199312000-00004
- Charlet J., Schnekenburger M., Brown K.W., Diederich M. (2012) DNA demethylation increases sensitivity of neuroblastoma cells to chemotherapeutic drugs. Biochem. Pharmacol. 83, 858–865. https://doi.org/10.1016/j.bcp.2012.01.009
- Lipatova A.V., Soboleva A.V., Gorshkov V.A., Bubis J.A., Solovyeva E.M., Krasnov G.S., Kochetkov D.V., Vorobyev P.O., Ilina I.Y., Moshkovskii S.A., Kjeldsen F., Gorshkov M.V., Chumakov P.M., Tarasova I.A. (2021) Multi-omics analysis of glioblastoma cells’ sensitivity to oncolytic viruses. Cancers (Basel). 13(21), 5268. https://doi.org/10.3390/cancers13215268
- Khandazhinskaya A.L., Alexandrova L.A., Matyugina E.S., Solyev P.N., Efremenkova O.V., Buckheit K.W., Wilkinson M., Buckheit R.W. Jr., Chernousova L.N., Smirnova T.G., Andreevskaya S.N., Leonova O.G., Popenko V.I., Kochetkov S.N., Seley-Radtke K.L. (2018) Novel 5’-norcarbocyclic pyrimidine derivatives as antibacterial agents. Molecules. 23(12), 3069. https://doi.org/10.3390/molecules23123069
- Kezin V.A., Matyugina E.S., Novikov M.S., Chizhov A.O., Snoeck R., Andrei G., Kochetkov S.N., Khandazhinskaya A.L. (2022) New derivatives of 5-substituted uracils: potential agents with a wide spectrum of biological activity. Molecules. 27(9), 2866. https://doi.org/10.3390/molecules27092866
- Carbon J., David H., Studier M.H. (1968) Thiobases in Escherchia coli transfer RNA: 2-thiocytosine and 5-methylaminomethyl-2-thiouracil. Science. 161, 1146–1147. https://doi.org/10.1126/science.161.3846.1146
- Orr G.F., Musso D.L., Boswell G.E., Kelley J.L., Joyner S.S., Davis S.T., Baccanari D.P. (1995) Inhibition of uridine phosphorylase: synthesis and structure-activity relationships of aryl-substituted 5-benzyluracils and 1-[(2-hydroxyethoxy)methyl]-5-benzyluracils. J. Med. Chem. 38, 3850–3856. https://doi.org/10.1021/jm00019a015
- El Kouni M.H., el Kouni M.M., Naguib F.N. (1993) Differences in activities and substrate specificity of human and murine pyrimidine nucleoside phosphorylases: implications for chemotherapy with 5-fluoropyrimidines. Cancer Res. 53, 3687–3693.
- Roth B., Aig E., Lane K., Rauckman B.S. (1980) 2,4-Diamino-5-benzylpyrimidines as antibacterial agents. 4. 6-Substituted trimethoprim derivatives from phenolic Mannich intermediates. Application to the synthesis of trimethoprim and 3,5-dialkylbenzyl analogues. J. Med. Chem. 23, 535–541. https://doi.org/10.1021/jm00179a012
- Orr G.F., Musso D.L., Kelley J.L., Joyner S.S., Davis S.T., Baccanari D.P. (1997) Inhibition of uridine phosphorylase. Synthesis and structure-activity relationships of aryl-substituted 1-((2-hydroxyethoxy)methyl)-5-(3-phenoxybenzyl)uracil. J. Med. Chem. 40, 1179–1185. https://doi.org/10.1021/jm960688j
- Chowdhury S.F., Villamor V.B., Guerrero R.H., Leal I., Brun R., Croft S.L., Goodman J.M., Maes L., Ruiz-Perez L.M., Pacanowska D.G., Gilbert I.H. (1999) Design, synthesis, and evaluation of inhibitors of trypanosomal and leishmanial dihydrofolate reductase. J. Med. Chem. 42, 4300–4312. https://doi.org/10.1021/jm981130+
- Nencka R., Votruba I., Hrebabecky H., Jansa P., Tloust’ova E., Horska K., Masojidkova M., Holy A. (2007) Discovery of 5-substituted-6-chlorouracils as efficient inhibitors of human thymidine phosphorylase. J. Med. Chem. 50, 6016–6023. https://doi.org/10.1021/jm070644i
- Novikov M.S., Buckheit R.W. Jr., Temburnikar K., Khandazhinskaya A.L., Ivanov A.V., Seley-Radtke K.L. (2010) 1-Benzyl derivatives of 5-(arylamino)uracils as anti-HIV-1 and anti-EBV agents. Bioorg. Med. Chem. 18, 8310–8314. https://doi.org/10.1016/j.bmc.2010.09.070
- Maslova A.A., Matyugina E.S., Snoeck R., Andrei G., Kochetkov S.N., Khandazhinskaya A.L., Novikov M.S. (2020) Uracil-containing heterodimers of a new type: synthesis and study of their anti-viral properties. Molecules. 25(15), 3350. https://doi.org/10.3390/molecules25153350
- Matyugina E., Novikov M., Babkov D., Ozerov A., Chernousova L., Andreevskaya S., Smirnova T., Karpenko I., Chizhov A., Murthu P., Lutz S., Kochetkov S., Seley-Radtke K.L., Khandazhinskaya A.L. (2015) 5-Arylaminouracil derivatives: new inhibitors of Mycobacterium tuberculosis. Chem. Biol. Drug. Des. 86, 1387–1396. https://doi.org/10.1111/cbdd.12603
- Vorbruggen H., Krolikiewicz K., Niedballa U. (1975) Synthesis of nucleosides with use of trimethylsilyl-heterocycles. Ann. N. Y. Acad. Sci. 255, 8–90. https://doi.org/10.1111/j.1749-6632.1975.tb29215.x
- Vorbrüggen H., Ruh-Pohlenz C. (2001) Handbook of nucleoside synthesis. New York: Wiley.
- Lopez-Suarez L., Awabdh S.A., Coumoul X., Chauvet C. (2022) The SH-SY5Y human neuroblastoma cell line, a relevant in vitro cell model for investigating neurotoxicology in human: focus on organic pollutants. Neurotoxicology. 92, 131–155. https://doi.org/10.1016/j.neuro.2022.07.008
- Kovalevich J., Santerre M., Langford D. (2021) Considerations for the use of SH-SY5Y neuroblastoma cells in neurobiology. Methods Mol. Biol. 2311, 9–23. https://doi.org/10.1007/978-1-0716-1437-2_2
- Cheung Y.T., Lau W.K., Yu M.S., Lai C.S., Yeung S.C., So K.F., Chang R.C. (2009) Effects of all-trans-retinoic acid on human SH-SY5Y neuroblastoma as in vitro model in neurotoxicity research. Neurotoxicology. 30, 127–135. https://doi.org/10.1016/j.neuro.2008.11.001
- Amrati F.E., Chebaibi M., Galvao de Azevedo R., Conte R., Slighoua M., Mssillou I., Kiokias S., de Freitas Gomes A., Soares Pontes G., Bousta D. (2023) Phenolic composition, wound healing, antinociceptive, and anticancer effects of Caralluma europaea extracts. Molecules. 28(4), 1780. https://doi.org/10.3390/molecules28041780
- Monga M., Sausville E.A. (2002) Developmental therapeutics program at the NCI: molecular target and drug discovery process. Leukemia. 16, 520–526. https://doi.org/10.1038/sj.leu.2402464
补充文件
