A bioinformatics method for identification of human proteases active against viral envelope glycoproteins: a case study on the SARS-CoV-2 spike protein
- Authors: Matveev E.V.1,2,3, Ponomarev G.V.1,2, Kazanov M.D.1,2,3
-
Affiliations:
- Skolkovo Institute of Science and Technology
- Kharkevich Institute for Information Transmission Problem
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology
- Issue: Vol 58, No 1 (2024)
- Pages: 171-177
- Section: БИОИНФОРМАТИКА
- URL: https://innoscience.ru/0026-8984/article/view/655353
- DOI: https://doi.org/10.31857/S0026898424010176
- EDN: https://elibrary.ru/NRZZBT
- ID: 655353
Cite item
Abstract
Many viruses, including SARS-CoV-2, the coronavirus responsible for the COVID-19 pandemic, enter host cells through a process cell-viral membrane fusion that is activated by proteolytic enzymes. Typically, these enzymes are host cell proteases. Identifying the proteases that activate the virus is not a simple task but is important for the development of new antiviral drugs. In this study, we developed a bioinformatics method for identifying proteases that can cleave viral envelope glycoproteins. The proposed approach involves the use of predictive models for the substrate specificity of human proteases and the application of structural analysis method for predicting the vulnerability of protein regions to proteolysis based on their 3D structures. Specificity models were constructed for 169 human proteases using information on their known substrates. A previously developed method for structural analysis of potential proteolysis sites was applied in parallel with specificity models. Validation of the proposed approach was performed on the SARS-CoV-2 spike protein, the proteolysis sites of which had been well studied.
Full Text

About the authors
E. V. Matveev
Skolkovo Institute of Science and Technology; Kharkevich Institute for Information Transmission Problem; Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology
Email: mkazanov@gmail.com
Russian Federation, Moscow, 121205; Moscow, 127051; Moscow, 117997
G. V. Ponomarev
Skolkovo Institute of Science and Technology; Kharkevich Institute for Information Transmission Problem
Email: mkazanov@gmail.com
Russian Federation, Moscow, 121205; Moscow, 127051
M. D. Kazanov
Skolkovo Institute of Science and Technology; Kharkevich Institute for Information Transmission Problem; Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology
Author for correspondence.
Email: mkazanov@gmail.com
Russian Federation, Moscow, 121205; Moscow, 127051; Moscow, 117997
References
- Ramage H., Cherry S. (2015) Virus-host interactions: from unbiased genetic screens to function. Annu. Rev. Virol. 2, 497–524. doi: 10.1146/annurev-virology-100114-055238
- Li G., Hilgenfeld R., Whitley R., De Clercq E. (2023) Therapeutic strategies for COVID-19: progress and lessons learned. Nat. Rev. Drug Discov. 22, 449–475. doi: 10.1038/s41573-023-00672-y
- V’kovski P., Kratzel A., Steiner S., Stalder H., Thiel V. (2021) Coronavirus biology and replication: implications for SARS-CoV-2. Nat. Rev. Microbiol. 19, 155–170. doi: 10.1038/s41579-020-00468-6
- Baggen J., Vanstreels E., Jansen S., Daelemans D. (2021) Cellular host factors for SARS-CoV-2 infection. Nat. Microbiol. 6, 1219–1232. doi: 10.1038/s41564-021-00958-0
- Takeda M. (2022) Proteolytic activation of SARS-CoV-2 spike protein. Microbiol. Immunol. 66, 15–23. doi: 10.1111/1348-0421.12945
- Jackson C.B., Farzan M., Chen B., Choe H. (2022) Mechanisms of SARS-CoV-2 entry into cells. Nat. Rev. Mol. Cell Biol. 23, 3–20. doi: 10.1038/s41580-021-00418-x
- Walls A.C., Park Y.J., Tortorici M.A., Wall A., McGuire A.T., Veesler D. (2020) Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell. 181, 281‒292.e6. doi: 10.1016/j.cell.2020.02.058
- Zabiegala A., Kim Y., Chang K.O. (2023) Roles of host proteases in the entry of SARS-CoV-2. Anim. Dis. 3(1), 12. doi: 10.1186/s44149-023-00075-x
- Benton D.J., Wrobel A.G., Xu P., Roustan C., Martin S.R., Rosenthal P.B., Skehel J.J., Gamblin S.J. (2020) Receptor binding and priming of the spike protein of SARS-CoV-2 for membrane fusion. Nature. 588, 327‒330. doi: 10.1038/s41586-020-2772-0
- Matsuyama S., Nao N., Shirato K., Kawase M., Saito S., Takayama I., Nagata N., Sekizuka T., Katoh H., Kato F., Sakata M., Tahara M., Kutsuna S., Ohmagari N., Kuroda M., Suzuki T., Kageyama T., Takeda M. (2020) Enhanced isolation of SARS-CoV-2 by TMPRSS2-expressing cells. Proc. Natl. Acad. Sci. USA. 117, 7001–7003. doi: 10.1073/pnas.2002589117
- Shang J., Wan Y., Luo C., Ye G., Geng Q., Auerbach A., Li F. (2020) Cell entry mechanisms of SARS-CoV-2. Proc. Natl. Acad. Sci. USA. 117, 11727‒11734. doi: 10.1073/pnas.2003138117
- Callaway E. (2020) The coronavirus is mutating — does it matter? Nature. 585, 174–177. doi: 10.1038/d41586-020-02544-6
- Lubinski B., Whittaker G.R. (2023) The SARS-CoV-2 furin cleavage site: natural selection or smoking gun? Lancet Microbe. 4(8), e570. doi: 10.1016/S2666-5247(23)00144-1
- Whittaker G.R. (2021) SARS-CoV-2 spike and its adaptable furin cleavage site. Lancet Microbe. 2(10), e488–e489. doi: 10.1016/S2666-5247(21)00174-9
- Wu Y., Zhao S. (2021) Furin cleavage sites naturally occur in coronaviruses. Stem Cell Res. 50, 102‒115. doi: 10.1016/j.scr.2020.102115
- Chan Y.A., Zhan S.H. (2021) The emergence of the spike furin cleavage site in SARS-CoV-2. Mol. Biol. Evol. 39(1), msab327. doi: 10.1093/molbev/msab327
- Whittaker G.R., Daniel S., Millet J.K. (2021) Coronavirus entry: how we arrived at SARS-CoV-2. Curr. Opin. Virol. 47, 113–120. doi: 10.1016/j.coviro.2021.02.006
- Liu Z., Zheng H., Yuan R., Li M., Lin H., Peng J., Xiong Q., Sun J., Li B., Wu J., Ke C., Hulswit R.J.G., Bowden T.A. Rambaut A., Pybus O.G., Loman N., Lu J. (2020) Identification of common deletions in the spike protein of SARS-CoV-2. J. Virol. 94, e00790-20. doi: 10.1128/JVI.00790-20
- Park J.E., Li K., Barlan A., Fehr A.R., Perlman S., McCray P.B., Gallagher T. (2016) Proteolytic processing of middle east respiratory syndrome coronavirus spikes expands virus tropism. Proc. Natl. Acad. Sci. USA. 113, 12262–12267. doi: 10.1073/pnas.1608147113
- Baggen J., Jacquemyn M., Persoons L., Vanstreels E., Pye V.E., Wrobel A.G., Calvaresi V., Martin S.R., Roustan C., Cronin N.B., Reading E., Thibault H.J., Vercruysse T., Maes P., De Smet F., Yee A., Nivitchanyong T., Roell M., Franco-Hernandez N., Rhinn H., Mamchak A.A. Young-Chapon M.A., Brown E., Cherepanov P., Daelemans D. (2023) TMEM106B is a receptor mediating ACE2-independent SARS-CoV-2 cell entry. Cell. 186, 3427–3442. doi: 10.1016/j.cell.2023.06.005
- Meng B., Abdullahi A., Ferreira I.A.T.M., Goonawardane N., Saito A., Kimura I., Yamasoba D., Gerber P.P., Fatihi S., Rathore S., Zepeda S.K., Papa G., Kemp S.A., Ikeda T., Toyoda M., Tan T.S., Kuramochi J., Mitsunaga S., Ueno T., Shirakawa K., Takaori-Kondo A., Brevini T., Mallery D.L., Charles O.J., CITIID-NIHR BioResource COVID-19 Collaboration, Genotype to Phenotype Japan (G2P-Japan) Consortium, Ecuador-COVID19 Consortium, Bowen, J. E., Joshi A., Walls A.C., Jackson L., Martin D., Smith K.G.C., Bradley J., Briggs J.A.G., Choi J., Madissoon E., Meyer K.B., Mlcochova P., Ceron-Gutierrez L., Doffinger R., Teichmann S.A., Fisher A.J., Pizzuto M.S., de Marco A., Corti D., Hosmillo M., Lee J.H., James L.C. Thukral L., Veesler D., Sigal A., Sampaziotis F., Goodfellow I.G., Matheson N.J., Sato K., Gupta R.K. (2022) Altered TMPRSS2 usage by SARS-CoV-2 Omicron impacts infectivity and fusogenicity. Nature. 603, 706–714. doi: 10.1038/s41586-022-04474-x
- Rawlings N.D., Barrett A.J., Thomas P.D., Huang X., Bateman A., Finn R.D. (2018) The MEROPS database of proteolytic enzymes, their substrates and inhibitors in 2017 and a comparison with peptidases in the PANTHER database. Nucleic Acids Res. 46, D624–D632. doi: 10.1093/nar/gkx1134
- Wasserman W.W., Sandelin A. (2004) Applied bioinformatics for the identification of regulatory elements. Nat. Rev. Genet. 5, 276–287. doi: 10.1038/nrg1315
- Schechter I., Berger A. (1968) On the active site of proteases. 3. Mapping the active site of papain, specific peptide inhibitors of papain. Biochem. Biophys. Res. Commun. 32, 898–902. doi: 10.1016/0006-291x(68)90326-4
- Matveev E.V., Safronov V.V., Ponomarev G.V., Kazanov M.D. (2023) Predicting structural susceptibility of proteins to proteolytic processing. Int. J. Mol. Sci. 24, 10761. doi: 10.3390/ijms241310761
- Igarashi Y., Eroshkin A., Gramatikova S., Gramatikoff K., Zhang Y., Smith J.W., Osterman A.L., Godzik A. (2007) CutDB: a proteolytic event database. Nucleic Acids Res. 35(Database issue), D546-9. doi: 10.1093/nar/gkl813
- Pedregosa F., Varoquaux G., Gramfort A., Michel V., Thirion B., Grisel O., Blondel M., Prettenhofer P., Weiss R., Dubourg V., Vanderplas J., Passos A., Cournapeau D., Brucher M., Perrot M., Duchesnay E., Louppe G. (2011) Scikit-Learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830. doi: 10.48550/arXiv.1201.0490
- The UniProt Consortium (2018) UniProt: the universal protein knowledgebase. Nucleic Acids Res. 46, 2699. doi: 10.1093/nar/gky092
- wwPDB consortium (2019) Protein Data Bank: the single global archive for 3D macromolecular structure data. Nucleic Acids Res. 47, D520–D528. doi: 10.1093/nar/gky949
- Waterhouse A., Bertoni M., Bienert S., Studer G., Tauriello G., Gumienny R., Heer F.T., De Beer T.A.P., Rempfer C., Bordoli L., Lepore R., Schwelde T. (2018) SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 46, W296–W303. doi: 10.1093/nar/gky427
- Hoffmann M., Kleine-Weber H., Pöhlmann S.A. (2020) Multibasic cleavage site in the spike protein of SARS-CoV-2 is essential for infection of human lung cells. Mol. Cell. 78, 779‒784.e5. doi: 10.1016/j.molcel.2020.04.022
Supplementary files
