Antibiotic Resistance: Threats and Search for an Escape

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Antibiotic and, more broadly, antimicrobial resistance is a naturally occurring biological phenomenon and a major public health problem. The first cases of mass emergence of drug-resistant strains of bacteria were observed in the mid-20th century; Since then, cases of resistance have been reported worldwide, and in the last two decades, multiple bacterial resistance has been increasingly reported. Factors contributing to the development of bacterial resistance include the overuse of antibacterial agents in humans or livestock and the release of antibacterial agents into the environment. Unfortunately, the development of new effective antibiotics is declining, which requires strengthening this work, as well as the search for alternative methods of treating infectious diseases.

Негізгі сөздер

Толық мәтін

Рұқсат жабық

Авторлар туралы

S. Kochetkov

Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: snk1952@gmail.com
Ресей, Moscow, 119991

Әдебиет тізімі

  1. Antimicrobial Resistance Collaborators (2022) Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 399(10325), 629–655.
  2. Jacoby G.A. (2017) History of drug-resistant microbes. In: Antimicrobial Drug Resistance. Berlin/Heidelberg, Germany: Springer, pp. 3–8.
  3. Perry J., Waglechner N., Wright G. (2016) The prehistory of antibiotic resistance. Cold Spring Harb. Perspect. Med. 6, a025197.
  4. Barlow M., Hall B.G. (2002) Phylogenetic analysis shows that the OXA beta-lactamase genes have been on plasmids for millions of years. J. Mol. Evol. 55, 314–321.
  5. Sir Alexander Fleming – Nobel Lecture – NobelPrize.org.” n.d. Nobel Prize. https://www.nobelprize.org/prizes/medicine/1945/fleming/lecture/
  6. Urban-Chmiel R., Marek A., Stepień-Pyśniak D., Wieczorek K., Dec M., Nowaczek A., Osek J. (2022) Antibiotic resistance in bacteria – a review. Antibiotics. 11, 1079. https://doi.org/10.3390/antibiotics11081079
  7. Munita J.M., Arias C.A. (2016) Mechanisms of antibiotic resistance. Microbiol. Spectr. 4, 1–37.
  8. Martinez J.L. (2011) Bottlenecks in the transferability of antibiotic resistance from natural ecosystems to human bacterial pathogens. Front. Microbiol. 2, 265.
  9. Jutkina J., Marathe N.P., Flach C.F., Larsson D.G.J. (2018) Antibiotics and common antibacterial biocides stimulate horizontal transfer of resistance at low concentrations. Sci. Total Environ. 616–617, 172–178.
  10. Zhang Y., Gu A.Z., He M., Li D., Chen J. (2017) Subinhibitory concentrations of disinfectants promote the horizontal transfer of multidrug resistance genes within and across genera. Environ. Sci. Technol. 51, 570–580.
  11. Kumar M., Sarma D.K., Shubham S., Kumawat M., Verma V., Nina P.B., Devraj J.P., Kumar S., Singh B., Tiwari R.R (2021) Futuristic non-antibiotic therapies to combat antibiotic resistance: a review. Front. Microbiol. 12, 609459. https://doi.org/:10.3389/fmicb.2021.609459
  12. Щекотихин А.Е., Олсуфьева Е.Н., Янковская В.С. (2022) Антибиотики и родственные соединения. Москва: Лаборатория знаний.
  13. Diacon A.H., Pym A., Grobusch M., Patientia R., Rustomjee R., Page-Shipp L., Pistorius C., Krause R., Bogoshi M., Churchyard G., Venter A., Allen J., Palomino J.C., De Marez T., van Heeswijk R.P., Lounis N., Meyvisch P., Verbeeck J., Parys W., de Beule K., Andries K., Mc Neeley D.F. (2009) The diarylquinoline TMC207 for multidrug-resistant tuberculosis. N. Engl. J. Med. 360(23), 2397–2405. https://doi. org/:10.1056/NEJMoa0808427
  14. Biukovic G., Basak S., Manimekalai M.S., Rishikesan S., Roessle M., Dick T., Rao S.P., Hunke C., Gruber G. (2013) Variations of subunit e of the Mycobacterium tuberculosis F1Fo ATP synthase and a novel model for mechanism of action of the tuberculosis drug TMC207. Antimicrob. Agents Chemother. 57, 168–176.
  15. Van Hoek A.H., Mevius D., Guerra B., Mullany P., Roberts A.P., Aarts H.J. (2011) Acquired antibiotic resistance genes: an overview. Front. Microbiol. 2, 203. https://doi. org/10.1016/j.totert.2023.100068
  16. Rather M.A., Gupta K., Mandal M. (2021) Microbial biofilm: formation, architecture, antibiotic resistance, and control strategies. Braz. J. Microbiol. 52, 1701–1718. https://doi.org/10.1007/s42770-021-00624-x
  17. Jamal M., Tasneem U., Hussain T., Andleeb S. (2015) Bacterial biofilm: its composition, formation and role in human infections. Res. Rev. J. Microbiol. Biotechnol 4, 1–153.
  18. Lohse M.B., Gulati M., Johnson A.D., Nobile C.J. (2018) Development and regulation of single-and multi-species Candida albicans biofilms. Nat. Rev. Microbiol. 16, 19‒31. https://doi. org/10.1038/nrmicro.2017.107
  19. Lewis K. (2010) Persister cells. Annu. Rev. Microbiol. 64, 357–372.
  20. Keren I., Kaldalu N., Spoering A., Wang Y., Lewis K. (2004) Persister cells and tolerance to antimicrobials. FEMS Microbiol. Lett. 230, 13–18.
  21. Balaban N.Q., Helaine S., Lewis K., Ackermann M., Aldridge B., Andersson D.I., Brynildsen M.P., Bumann D., Camilli A., Collins J.J., Dehio C., Fortune S., Ghigo J.M., Hardt W.D., Harms A., Heinemann M., Hung D.T., Jenal U., Levin B.R., Michiels J., Storz G., Tan M.W., Tenson T., Van Melderen L., Zinkernagel A. (2019) Definitions and guidelines for research on antibiotic persistence. Nat. Rev. Microbiol. 17, 441–448.
  22. Bigger J. (1944) Treatment of staphylococcal infections with penicillin by intermittent sterilization. Lancet. 244, 497–500.
  23. Yahav D., Shepshelovich D., Tau N. (2021) Cost analysis of new antibiotics to treat multidrug-resistant bacterial infections: mind the gap. Infect. Dis. Ther. 10, 621–630.
  24. Minandri F., Bonchi C., Frangipani E., Imperi F., Visca P. (2014) Promises and failures of gallium as an antibacterial agent. Future Microbiol. 9(3), 379–397.
  25. Lemire J.A., Harrison J.J., Turner R.J. (2013) Antimicrobial activity of metals: mechanisms, molecular targets, and applications. Nat. Rev. Microbiol. 11(6), 371–384.
  26. Hwang I.Y., Tan M.H., Koh E., Ho C.L., Poh C.L., Chang M.W. (2014) Reprogramming microbes to be pathogen-seeking killers. ACS Synth Biol. 3(4), 228–237.
  27. Zasloff M. (2002) Antimicrobial peptides of multicellular organisms. Nature. 415, 389–395. https://doi.org/10.1038/415389a
  28. Peters B.M., Shirtliff M.E., Jabra-Rizk M.A. (2010) Antimicrobial peptides: primeval molecules or future drugs? PLoS Pathog. 6, e1001067. https://doi.org/10.1371/journal.ppat.1001067
  29. Сафронова В.Н., Болосов И.А., Пантелеев П.В., Баландин С.В., Овчинникова Т.В. (2023) Терапевтический потенциал и перспективы применения антимикробных пептидов в эпоху глобального распространения антибиотикорезистентности. Биоорган. химия. 49(3), 243–258.
  30. Flamm R.K., Rhomberg P.R., Simpson K.M., Farrell D.J., Sader H.S., Jones R.N. (2015) In vitro spectrum of pexiganan activity when tested against pathogens from diabetic foot infections and with selected resistance mechanisms. Antimicrob Agents Chemother. 59(3), 1751–1754.
  31. Chawla M., Verma J., Gupta R., Das B. (2022) Antibiotic potentiators against multidrug-resistant bacteria: discovery, development, and clinical relevance. Front. Microbiol. 13, 887251. https://doi. org/10.3389/fmicb.2022.887251
  32. Reardon S. (2014) Phage therapy gets revitalized Nature. 510(7503), 15–16. https://doi. org/10.1038/510015a
  33. Летаров А.В. (2019) Современные концепции биологии бактериофагов. М.: ДеЛи.
  34. Ильина Т.С., Толордава Э.Р., Романова Ю.М. (2012) Взгляд на фаготерапию через 100 лет после открытия бактериофагов. Молекуляр. генетика, микробиол. и вирусол. 37(3), 103–112.
  35. Mustefa Ame M., Mume D. (2023) Review on the global public health issue of antibiotic resistance and potential solutions. Publ. H Open. Acc. 7(1), 000233.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Introduction of new antibiotics and emergence of resistant strains.

Жүктеу (182KB)
3. Fig. 2. Antibiotic resistance and pathways of acquisition. Abr - antibiotic resistance.

Жүктеу (341KB)
4. Fig. 3. Targets of antibiotic action (a) and the main mechanisms of resistance (b) to them.

Жүктеу (409KB)

© Russian Academy of Sciences, 2024