Enzymes of ADP-Heptose Biosynthesis as Targets for the Creation of Broad-Spectrum Antibacterial Drugs
- Authors: Seregina T.A.1, Petrushanko I.Y.1, Lobanov K.V.1, Shakulov R.S.1, Mironov A.S.1
-
Affiliations:
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences
- Issue: Vol 58, No 6 (2024)
- Pages: 927-936
- Section: ОБЗОРЫ
- URL: https://innoscience.ru/0026-8984/article/view/677875
- DOI: https://doi.org/10.31857/S0026898424060048
- EDN: https://elibrary.ru/HMZWNA
- ID: 677875
Cite item
Abstract
Solving the problem of multidrug resistance currently requires the development of non-standard approaches, since the potential for creating new antibiotics is almost exhausted. Controlling the metabolism of a pathogen in order to increase its susceptibility to antibacterial therapy is considered the most promising area of research for the creation of new combination drugs. In recent years, the number of studies devoted to investigation the role of the biosynthesis of the cell wall component ADP-heptose in the sensitivity of bacteria to antibiotics, as well as in the pathogenesis of bacterial infection, has increased. This review examines the main directions of scientific research in the field of use of ADP-heptose and its analogues in the treatment of bacterial infections. The exclusive role of ADP-heptose in the induction of an immune response is known, through the activation of the NF-κB signaling pathway and the synthesis of pro-inflammatory cytokines. Our latest work has shown that disruption of the synthesis of ADP-heptose and the efflux of sedoheptulose-7-phosphate from the pentose phosphate pathway induces a redox imbalance and completely disorganizes the metabolism of low molecular weight thiols such as hydrogen sulfide, cysteine, glutathione, which makes the bacterial cell extremely vulnerable to the action of antibiotics. We demonstrate that the hypersensitivity of ADP-heptose mutants to a wide range of antibiotics is explained by a new metabolic status rather than by changes in cell wall permeability. Thus, potential inhibitors of ADP-heptose biosynthesis can combine several positive qualities: an immunomodulatory effect and a powerful potentiating effect in combination with antibiotic therapy.
Full Text

About the authors
T. A. Seregina
Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences
Author for correspondence.
Email: tatyana.s82@gmail.com
Russian Federation, Moscow, 119991
I. Yu. Petrushanko
Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences
Email: tatyana.s82@gmail.com
Russian Federation, Moscow, 119991
K. V. Lobanov
Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences
Email: tatyana.s82@gmail.com
Russian Federation, Moscow, 119991
R. S. Shakulov
Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences
Email: tatyana.s82@gmail.com
Russian Federation, Moscow, 119991
A. S. Mironov
Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences
Email: tatyana.s82@gmail.com
Russian Federation, Moscow, 119991
References
- Bharadwaj A., Rastogi A., Pandey S., Gupta S., Sohal J.S. (2022) Multidrug-resistant bacteria: their mechanism of action and prophylaxis. BioMed. Res. Int. 2022, 5419874. https://doi.org/10.1155/2022/5419874
- Darby E.M., Trampari E., Siasat P., Gaya M.S., Alav I., Webber M.A., Blair J.M.A. (2023) Molecular mechanisms of antibiotic resistance revisited. Nat. Rev. Microbiol. 21, 280–295. https://doi.org/10.1038/s41579-022-00820-y
- Kohanski M.A., Dwyer D.J., Hayete B., Lawrence C.A., Collins J.J. (2007) A common mechanism of cellular death induced by bactericidal antibiotics. Cell. 130, 797–810. https://doi.org/10.1016/j.cell.2007.06.049
- Lobritz M.A., Belenky P., Porter C.B.M., Gutierrez A., Yang J.H., Schwarz E.G., Dwyer D.J., Khalil A.S., Collins J.J. (2015) Antibiotic efficacy is linked to bacterial cellular respiration. Proc. Natl. Acad. Sci. USA. 112, 8173–8180. https://doi.org/10.1073/pnas.1509743112
- Dwyer D.J., Belenky P.A., Yang J.H., MacDonald I.C., Martell J.D., Takahashi N., Chan C.T., Lobritz M.A., Braff D., Schwarz E.G., Ye J.D., Pati M., Vercruysse M., Ralifo P.S., Allison K.R., Khalil A.S., Ting A.Y., Walker G.C., Collins J.J. (2014) Antibiotics induce redox-related physiological alterations as part of their lethality. Proc. Natl. Acad. Sci. USA. 111, E2100–E2109. https://doi.org/10.1073/pnas.1401876111
- Stokes J.M., Lopatkin A.J., Lobritz M.A., Collins J.J. (2019) Bacterial metabolism and antibiotic efficacy. Cell Metabolism. 30, 251–259. https://doi.org/10.1016/j.cmet.2019.06.009
- Shatalin K., Shatalina E., Mironov A., Nudler E. (2011) H2S: a universal defense against antibiotics in bacteria. Science. 334, 986–990. https://doi.org/10.1126/science.1209855
- Mironov A., Seregina T., Nagornykh M, Luhachack L., Korolkova L., Errais Lopes L., Kotova V., Zavilgelsky G., Shakulov R., Shatalin R., Nudler E. (2017) A mechanism of H2S-mediated protection against oxidative stress in E. coli. Proc. Natl. Acad. Sci. USA. 114, 6022–6027. https://doi.org/10.1073/pnas.1703576114
- Mironov A., Seregina T., Shatalin K., Nagornykh M., Shakulov R., Nudler E. (2020) CydDC functions as a cytoplasmic cystine reductase to sensitize Escherichia сoli to оxidative stress and aminoglycosides. Proc. Natl. Acad. Sci. USA. 117, 23565–53570. https://doi.org/10.1073/pnas.2007817117
- Серегина Т., Лобанов К., Шакулов Р., Миронов А. (2022) Повышение бактерицидного эффекта антибиотиков путем ингибирования ферментов, вовлеченных в генерацию сероводорода у бактерий. Молекуляр. биология. 57, 697–709.
- Sprenger G.A. (1995) Genetics of pentose-phosphate pathway enzymes of Escherichia coli K-12. Arch. Microbiol. 164, 324–330. https://doi.org/10.1007/BF02529978
- Kneidinger B., Marolda C., Graninger M., Zamyatina A., McArthur F., Kosma P., Valvano M.A., Messner P. (2002) Biosynthesis pathway of ADP-l-glycero-β-D-manno-heptose in Escherichia coli. J. Bacteriol. 184, 363–369. https://doi.org/10.1128/JB.184.2.363-369.2002
- Huang K.C., Mukhopadhyay R., Wen B., Gitai Z., Wingreen N.S. (2008) Cell shape and cell-wall organization in gram-negative bacteria. Proc. Natl. Acad. Sci. USA. 105, 19282–19287. https://doi.org/10.1073/pnas.0805309105
- Seregina T.A., Petrushanko I.Yu., Shakulov R.S., Zaripov P.I., Makarov A.A., Mitkevich V.A., Mironov A.S. (2022) The inactivation of LPS biosynthesis genes in E. сoli cells leads to oxidative stress. Cells. 11. https://doi.org/10.3390/cells11172667
- Schnaitman C.A., Klena J.D. (1993) Genetics of lipopolysaccharide biosynthesis in enteric bacteria. Microbiol. Rev. 57, 655–682. https://doi.org/10.1128/mr.57.3.655-682.1993
- Taylor P.L., Blakely K.M., de Leon G.P., Walker J.R., McArthur F., Evdokimova E., Zhang K., Valvano M.A., Wright G.D., Junop M.S. (2008) Structure and function of sedoheptulose-7-phosphate isomerase, a critical enzyme for lipopolysaccharide biosynthesis and a target for antibiotic adjuvants. J. Biol.Chem. 283. 2835–2845. https://doi.org/10.1074/jbc.M706163200
- Desroy N., Denis A., Oliveira C., Atamanyuk D., Briet S., Faivre F., LeFralliec G., Bonvin Y., Oxoby M., Escaich S., Floquet S., Drocourt E., Vongsouthi V., Durant L., Moreau F., Verhey T.B., Lee T.W., Junop M.S., Gerusz V. (2013) Novel HldE-K inhibitors leading to attenuated gram negative bacterial virulence. J. Med. Chem. 56, 1418–1430. https://doi.org/ 10.1021/jm301499r
- Desroy N., Moreau F., Briet S., Fralliec G.L., Floquet S., Durant L., Vongsouthi V., Gerusz V., Denis A., Escaich S. (2009) Towards gram-negative antivirulence drugs: new inhibitors of HldE kinase. Bioorg. Med. Chem. 17, 1276–1289. https://doi.org/10.1016/j.bmc.2008.12.021
- Durka M., Tikad A., Périon R., Bosco M., Andaloussi M., Floquet S., Malacain E., Moreau F., Oxoby M., Gerusz V., Vincent S.P. (2011) Systematic synthesis of inhibitors of the two first enzymes of the bacterial heptose biosynthetic pathway: towards antivirulence molecules targeting lipopolysaccharide biosynthesis. Chemistry. 17, 11305–11313. https://doi.org/10.1002/chem.201100396
- Valvano M.A. (1999) Biosynthesis and genetics of ADP-heptose. J. Endotoxin Res. 5, 90–95. https://doi.org/10.1.177/09680519990050010901
- Pagnout C., Sohm B., Razafitianamaharavo A., Caillet C., Offroy M., Leduc M., Gendre H., Jomini S., Beaussart A., Bauda P., Duval J.F.L. (2019) Pleiotropic effects of rfa-gene mutations on Escherichia coli envelope properties. Sci. Rep. 9, 9696. https://doi.org/10.1038/s41598-019-46100-3
- Shimada T., Takada, H., Yamamoto K., Ishihama A. (2015) Expanded roles of two-component response regulator OmpR in Escherichia сoli: genomic SELEX search for novel regulation targets. Genes to Cells. 20, 915–931. https://doi.org/10.1111/gtc.12282
- Fu D., Wu J., Gu Y., Li Q., Shao Y., Feng H., Song X., Tu J., Qi K. (2022) The response regulator OmpR contributes to the pathogenicity of avian pathogenic Escherichia сoli. Poultry Sci. 101, 101757. https://doi.org/10.1016/j.psj.2022.101757
- Jubelin G., Vianney A., Beloin C., Ghigo J.M., Lazzaroni J.C., Lejeune P., Dorel C. (2005) CpxR/OmpR interplay regulates curli gene expression in response to osmolarity in Escherichia сoli. J. Bacteriol. 187, 2038–2049. https://doi.org/10.1128/jb.187.6.2038-2049.2005
- Rome K., Borde C., Taher R., Cayron J., Lesterlin C., Gueguen E., De Rosny E., Rodrigue A. (2018) The two-component system ZraPSR is a novel ESR that contributes to intrinsic antibiotic tolerance in Escherichia сoli. J. Mol. Biol. 430, 4971–4985. https://doi.org/10.1016/j.jmb.2018.10.021
- Leonhartsberger S., Huber A., Lottspeich F., Böck A. (2001) The hydH/G genes from Escherichia сoli code for a zinc and lead responsive two-component regulatory system. J. Mol. Biol. 307, 93–105. https://doi.org/10.1006/jmbi.2000.4451
- Wang X., Quinn P.J. (2010) Lipopolysaccharide: biosynthetic pathway and structure modification. Progress Lipid Res. 49, 97–107. https://doi.org/10.1016/j.plipres.2009.06.002
- Nikaido H., Vaara M. (1985) Molecular basis of bacterial outer membrane permeability. Microbiol. Rev. 49, 1–32. https://doi.org/10.1128/mr.49.1.1-32.1985
- Yethon J.A., Vinogradov E., Perry M.B., Whitfield C. (2000) Mutation of the lipopolysaccharide core glycosyltransferase encoded by waag destabilizes the outer membrane of Escherichia сoli by interfering with core phosphorylation. J. Bacteriol. 182, 5620–5623. https://doi.org/10.1128/jb.182.19.5620-5623.2000
- Beveridge T.J. (1999) Structures of gram-negative cell walls and their derived membrane vesicles. J. Bacteriol. 181, 4725–4733. https://doi.org/10.1128/jb.181.16.4725-4733.1999
- Achouak W., Heulin T., Pagès J.M. (2001) Multiple facets of bacterial porins. FEMS Microbiol. Lett. 199, 1–7. https://doi.org/10.1111/j.1574-6968.2001.tb10642.x
- Nickerson K.P., Chanin R.B., Sistrunk J.R., Rasko D.A., Fink P.J., Barry E.M., Nataro J.P., Faherty C.S. (2017) Analysis of Shigella flexneri resistance, biofilm formation, and transcriptional profile in response to bile salts. Infect. Immun. 85, 1–18. https://doi.org/10.1128/iai.01067-16
- Mohammed Jajere S.A (2019) Review of Salmonella еnterica with particular focus on the pathogenicity and virulence factors, host specificity and adaptation and antimicrobial resistance including multidrug resistance. Veterinary World. 12, 504–521. https://doi.org/10.14202/vetworld.2019.504-521
- Joseph J., Zhang L., Adhikari P., Evans J.D., Ramachandran R. (2023) Avian pathogenic Escherichia coli (APEC) in broiler breeders: an overview. Pathogens. 12. https://doi.org/10.3390/pathogens12111280
- Matsuura M. (2013) Structural modifications of bacterial lipopolysaccharide that facilitate gram-negative bacteria evasion of host innate immunity. Front. Immunol. 4, 109. https://doi.org/10.3389/fimmu.2013.00109
- Zhao Y., Shao F. (2015) Diverse mechanisms for inflammasome sensing of cytosolic bacteria and bacterial virulence. Curr. Opin. Microbiol. 29, 37–42. https://doi.org/10.1016/j.mib.2015.10.003
- Hu X.Y., Yang C., Wang P., Zhang G.L. (2018) ADP-heptose: a new innate immune modulator. Carbohydrate Res. 473. https://doi.org/10.1016/j.carres.2018.12.011
- Liu T., Zhang L., Joo D., Sun S.C. (2017) NF-κB signaling in inflammation. Signal Transduct. Targeted Therapy. 2, 17023. https://doi.org/10.1038/sigtrans.2017.23
- Adekoya I.A., Guo C.X., Gray-Owen S.D., Cox A.D., Sauvageau J. (2018) D-glycero-β-D-manno-heptose 1-phosphate and D-glycero-β-D-manno-heptose 1,7-biphosphate are both innate immune agonists. J. Immunol. 201, 2385–2391. https://doi.org/10.4049/jimmunol.1801012
- Zhou P., She Y., Dong N., Li P., He H., Borio A., Wu Q., Lu S., Ding X., Cao Y., Xu Y., Gao W., Dong M., Ding J., Wang D.C., Zamyatina A., Shao F. (2018) Alpha-kinase 1 is a cytosolic innate immune receptor for bacterial ADP-heptose. Nature. 561, 122–126. https://doi.org/10.1038/s41586-018-0433-3
- Pagnout C., Sohm B., Razafitianamaharavo A., Caillet C., Offroy M., Leduc M., Gendre H., Jomini S., Beaussart A., Bauda P., Duval J.F.L. (2019) Pleiotropic effects of rfa-gene mutations on Escherichia coli envelope properties. Sci. Rep. 9, 9696. https://doi.org/10.1038/s41598-019-46100-3
- Krüger A., Grüning N.M., Wamelink M.M., Kerick M., Kirpy A., Parkhomchuk D., Bluemlein K., Schweiger M.R., Soldatov A., Lehrach H., Jakobs C., Ralser M. (2011) The pentose phosphate pathway is a metabolic redox sensor and regulates transcription during the antioxidant response. Antioxidants & Redox Signal. 15, 311–324. https://doi.org/10.1089/ars.2010.3797
- Серегина Т.А., Петрушанко И.Ю., Зарипов П.И., Кулешова Ю.Д., Лобанов К.В., Шакулов Р.С., Митькевич В.А., Макаров А.А., Миронов А.С. (2023) Низкомолекулярные тиолы как фактор, усиливающий чувствительность мутантов Еscherichia coli с нарушенным синтезом ADP-гептозы к антибиотикам. Молекуляр. биология. 57, 995–1005.
- Seregina T.A., Petrushanko I.Yu., Zaripov P.I., Shakulov R.S., Sklyarova A.S., Mitkevich V.A., Makarov A.A., Mironov A.S. (2023) Activation of purine biosynthesis suppresses the sensitivity of E. coli GmhA mutant to antibiotics. Int. J. Mol. Sci. 24. https://doi.org/10.3390/ijms242216070
- Mieyal J.J., Chock P.B. (2012) Posttranslational modification of cysteine in redox signaling and oxidative stress: focus on S-glutathionylation. Antioxid. Redox Signal. 16, 471–475. https://doi.org/10.1089/ars.2011.4454
- Chai Y.C., Mieyal J. (2023) Glutathione and glutaredoxin – key players in cellular redox homeostasis and signaling. Antioxidants. 12, 1553. https://doi.org/10.3390/antiox12081553
- Xiong Y., Uys J.D., Tew K.D., Townsend D.M. (2011) S-glutathionylation: from molecular mechanisms to health outcomes. Antioxid. Redox Signal. 15, 233–270. https://doi.org/10.1089/ars.2010.3540
- Moreau F., Desroy N., Genevard J.M., Vongsouthi V., Gerusz V., Le Fralliec G., Oliveira C., Floquet S., Denis A., Escaich S., Wolf K., Busemann M., Aschenbrenner A. (2008) Discovery of new gram-negative antivirulence drugs: structure and properties of novel E. coli WaaC inhibitors. Bioorg. Med. Chem. Lett. 18, 4022–4026. https://doi.org/10.1016/j.bmcl.2008.05.117
- Milicaj J., Hassan B.A., Cote J.M., Ramirez-Mondragon C.A., Jaunbocus N., Rafalowski A., Patel K.R., Castro C.D., Muthyala R., Sham Y.Y., Taylor E.A. (2022) Discovery of first-in-class nanomolar inhibitors of heptosyltransferase I reveals a new aminoglycoside target and potential alternative mechanism of action. Sci. Rep. 12, 7302. https://doi.org/10.1038/s41598-022-10776-x
- Velkov T., Roberts K., Nation R., Thompson P., Li J. (2013) Pharmacology of polymyxins: new insights into an ’old class of antibiotics. Future Microbiol. 8, 711–724. https://doi.org/10.2217/fmb.13.39
- Mahamad Maifiah M., Creek D., Nation R., Forrest A., Tsuji B., Velkov T., Li J. (2017) Untargeted metabolomics analysis reveals key pathways responsible for the synergistic killing of colistin and doripenem combination against Аcinetobacter baumannii. Sci. Rep. 7, 45527. https://doi.org/10.1038/srep45527
Supplementary files
