Enzymes of ADP-Heptose Biosynthesis as Targets for the Creation of Broad-Spectrum Antibacterial Drugs

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Solving the problem of multidrug resistance currently requires the development of non-standard approaches, since the potential for creating new antibiotics is almost exhausted. Controlling the metabolism of a pathogen in order to increase its susceptibility to antibacterial therapy is considered the most promising area of research for the creation of new combination drugs. In recent years, the number of studies devoted to investigation the role of the biosynthesis of the cell wall component ADP-heptose in the sensitivity of bacteria to antibiotics, as well as in the pathogenesis of bacterial infection, has increased. This review examines the main directions of scientific research in the field of use of ADP-heptose and its analogues in the treatment of bacterial infections. The exclusive role of ADP-heptose in the induction of an immune response is known, through the activation of the NF-κB signaling pathway and the synthesis of pro-inflammatory cytokines. Our latest work has shown that disruption of the synthesis of ADP-heptose and the efflux of sedoheptulose-7-phosphate from the pentose phosphate pathway induces a redox imbalance and completely disorganizes the metabolism of low molecular weight thiols such as hydrogen sulfide, cysteine, glutathione, which makes the bacterial cell extremely vulnerable to the action of antibiotics. We demonstrate that the hypersensitivity of ADP-heptose mutants to a wide range of antibiotics is explained by a new metabolic status rather than by changes in cell wall permeability. Thus, potential inhibitors of ADP-heptose biosynthesis can combine several positive qualities: an immunomodulatory effect and a powerful potentiating effect in combination with antibiotic therapy.

Full Text

Restricted Access

About the authors

T. A. Seregina

Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences

Author for correspondence.
Email: tatyana.s82@gmail.com
Russian Federation, Moscow, 119991

I. Yu. Petrushanko

Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences

Email: tatyana.s82@gmail.com
Russian Federation, Moscow, 119991

K. V. Lobanov

Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences

Email: tatyana.s82@gmail.com
Russian Federation, Moscow, 119991

R. S. Shakulov

Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences

Email: tatyana.s82@gmail.com
Russian Federation, Moscow, 119991

A. S. Mironov

Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences

Email: tatyana.s82@gmail.com
Russian Federation, Moscow, 119991

References

  1. Bharadwaj A., Rastogi A., Pandey S., Gupta S., Sohal J.S. (2022) Multidrug-resistant bacteria: their mechanism of action and prophylaxis. BioMed. Res. Int. 2022, 5419874. https://doi.org/10.1155/2022/5419874
  2. Darby E.M., Trampari E., Siasat P., Gaya M.S., Alav I., Webber M.A., Blair J.M.A. (2023) Molecular mechanisms of antibiotic resistance revisited. Nat. Rev. Microbiol. 21, 280–295. https://doi.org/10.1038/s41579-022-00820-y
  3. Kohanski M.A., Dwyer D.J., Hayete B., Lawrence C.A., Collins J.J. (2007) A common mechanism of cellular death induced by bactericidal antibiotics. Cell. 130, 797–810. https://doi.org/10.1016/j.cell.2007.06.049
  4. Lobritz M.A., Belenky P., Porter C.B.M., Gutierrez A., Yang J.H., Schwarz E.G., Dwyer D.J., Khalil A.S., Collins J.J. (2015) Antibiotic efficacy is linked to bacterial cellular respiration. Proc. Natl. Acad. Sci. USA. 112, 8173–8180. https://doi.org/10.1073/pnas.1509743112
  5. Dwyer D.J., Belenky P.A., Yang J.H., MacDonald I.C., Martell J.D., Takahashi N., Chan C.T., Lobritz M.A., Braff D., Schwarz E.G., Ye J.D., Pati M., Vercruysse M., Ralifo P.S., Allison K.R., Khalil A.S., Ting A.Y., Walker G.C., Collins J.J. (2014) Antibiotics induce redox-related physiological alterations as part of their lethality. Proc. Natl. Acad. Sci. USA. 111, E2100–E2109. https://doi.org/10.1073/pnas.1401876111
  6. Stokes J.M., Lopatkin A.J., Lobritz M.A., Collins J.J. (2019) Bacterial metabolism and antibiotic efficacy. Cell Metabolism. 30, 251–259. https://doi.org/10.1016/j.cmet.2019.06.009
  7. Shatalin K., Shatalina E., Mironov A., Nudler E. (2011) H2S: a universal defense against antibiotics in bacteria. Science. 334, 986–990. https://doi.org/10.1126/science.1209855
  8. Mironov A., Seregina T., Nagornykh M, Luhachack L., Korolkova L., Errais Lopes L., Kotova V., Zavilgelsky G., Shakulov R., Shatalin R., Nudler E. (2017) A mechanism of H2S-mediated protection against oxidative stress in E. coli. Proc. Natl. Acad. Sci. USA. 114, 6022–6027. https://doi.org/10.1073/pnas.1703576114
  9. Mironov A., Seregina T., Shatalin K., Nagornykh M., Shakulov R., Nudler E. (2020) CydDC functions as a cytoplasmic cystine reductase to sensitize Escherichia сoli to оxidative stress and aminoglycosides. Proc. Natl. Acad. Sci. USA. 117, 23565–53570. https://doi.org/10.1073/pnas.2007817117
  10. Серегина Т., Лобанов К., Шакулов Р., Миронов А. (2022) Повышение бактерицидного эффекта антибиотиков путем ингибирования ферментов, вовлеченных в генерацию сероводорода у бактерий. Молекуляр. биология. 57, 697–709.
  11. Sprenger G.A. (1995) Genetics of pentose-phosphate pathway enzymes of Escherichia coli K-12. Arch. Microbiol. 164, 324–330. https://doi.org/10.1007/BF02529978
  12. Kneidinger B., Marolda C., Graninger M., Zamyatina A., McArthur F., Kosma P., Valvano M.A., Messner P. (2002) Biosynthesis pathway of ADP-l-glycero-β-D-manno-heptose in Escherichia coli. J. Bacteriol. 184, 363–369. https://doi.org/10.1128/JB.184.2.363-369.2002
  13. Huang K.C., Mukhopadhyay R., Wen B., Gitai Z., Wingreen N.S. (2008) Cell shape and cell-wall organization in gram-negative bacteria. Proc. Natl. Acad. Sci. USA. 105, 19282–19287. https://doi.org/10.1073/pnas.0805309105
  14. Seregina T.A., Petrushanko I.Yu., Shakulov R.S., Zaripov P.I., Makarov A.A., Mitkevich V.A., Mironov A.S. (2022) The inactivation of LPS biosynthesis genes in E. сoli cells leads to oxidative stress. Cells. 11. https://doi.org/10.3390/cells11172667
  15. Schnaitman C.A., Klena J.D. (1993) Genetics of lipopolysaccharide biosynthesis in enteric bacteria. Microbiol. Rev. 57, 655–682. https://doi.org/10.1128/mr.57.3.655-682.1993
  16. Taylor P.L., Blakely K.M., de Leon G.P., Walker J.R., McArthur F., Evdokimova E., Zhang K., Valvano M.A., Wright G.D., Junop M.S. (2008) Structure and function of sedoheptulose-7-phosphate isomerase, a critical enzyme for lipopolysaccharide biosynthesis and a target for antibiotic adjuvants. J. Biol.Chem. 283. 2835–2845. https://doi.org/10.1074/jbc.M706163200
  17. Desroy N., Denis A., Oliveira C., Atamanyuk D., Briet S., Faivre F., LeFralliec G., Bonvin Y., Oxoby M., Escaich S., Floquet S., Drocourt E., Vongsouthi V., Durant L., Moreau F., Verhey T.B., Lee T.W., Junop M.S., Gerusz V. (2013) Novel HldE-K inhibitors leading to attenuated gram negative bacterial virulence. J. Med. Chem. 56, 1418–1430. https://doi.org/ 10.1021/jm301499r
  18. Desroy N., Moreau F., Briet S., Fralliec G.L., Floquet S., Durant L., Vongsouthi V., Gerusz V., Denis A., Escaich S. (2009) Towards gram-negative antivirulence drugs: new inhibitors of HldE kinase. Bioorg. Med. Chem. 17, 1276–1289. https://doi.org/10.1016/j.bmc.2008.12.021
  19. Durka M., Tikad A., Périon R., Bosco M., Andaloussi M., Floquet S., Malacain E., Moreau F., Oxoby M., Gerusz V., Vincent S.P. (2011) Systematic synthesis of inhibitors of the two first enzymes of the bacterial heptose biosynthetic pathway: towards antivirulence molecules targeting lipopolysaccharide biosynthesis. Chemistry. 17, 11305–11313. https://doi.org/10.1002/chem.201100396
  20. Valvano M.A. (1999) Biosynthesis and genetics of ADP-heptose. J. Endotoxin Res. 5, 90–95. https://doi.org/10.1.177/09680519990050010901
  21. Pagnout C., Sohm B., Razafitianamaharavo A., Caillet C., Offroy M., Leduc M., Gendre H., Jomini S., Beaussart A., Bauda P., Duval J.F.L. (2019) Pleiotropic effects of rfa-gene mutations on Escherichia coli envelope properties. Sci. Rep. 9, 9696. https://doi.org/10.1038/s41598-019-46100-3
  22. Shimada T., Takada, H., Yamamoto K., Ishihama A. (2015) Expanded roles of two-component response regulator OmpR in Escherichia сoli: genomic SELEX search for novel regulation targets. Genes to Cells. 20, 915–931. https://doi.org/10.1111/gtc.12282
  23. Fu D., Wu J., Gu Y., Li Q., Shao Y., Feng H., Song X., Tu J., Qi K. (2022) The response regulator OmpR contributes to the pathogenicity of avian pathogenic Escherichia сoli. Poultry Sci. 101, 101757. https://doi.org/10.1016/j.psj.2022.101757
  24. Jubelin G., Vianney A., Beloin C., Ghigo J.M., Lazzaroni J.C., Lejeune P., Dorel C. (2005) CpxR/OmpR interplay regulates curli gene expression in response to osmolarity in Escherichia сoli. J. Bacteriol. 187, 2038–2049. https://doi.org/10.1128/jb.187.6.2038-2049.2005
  25. Rome K., Borde C., Taher R., Cayron J., Lesterlin C., Gueguen E., De Rosny E., Rodrigue A. (2018) The two-component system ZraPSR is a novel ESR that contributes to intrinsic antibiotic tolerance in Escherichia сoli. J. Mol. Biol. 430, 4971–4985. https://doi.org/10.1016/j.jmb.2018.10.021
  26. Leonhartsberger S., Huber A., Lottspeich F., Böck A. (2001) The hydH/G genes from Escherichia сoli code for a zinc and lead responsive two-component regulatory system. J. Mol. Biol. 307, 93–105. https://doi.org/10.1006/jmbi.2000.4451
  27. Wang X., Quinn P.J. (2010) Lipopolysaccharide: biosynthetic pathway and structure modification. Progress Lipid Res. 49, 97–107. https://doi.org/10.1016/j.plipres.2009.06.002
  28. Nikaido H., Vaara M. (1985) Molecular basis of bacterial outer membrane permeability. Microbiol. Rev. 49, 1–32. https://doi.org/10.1128/mr.49.1.1-32.1985
  29. Yethon J.A., Vinogradov E., Perry M.B., Whitfield C. (2000) Mutation of the lipopolysaccharide core glycosyltransferase encoded by waag destabilizes the outer membrane of Escherichia сoli by interfering with core phosphorylation. J. Bacteriol. 182, 5620–5623. https://doi.org/10.1128/jb.182.19.5620-5623.2000
  30. Beveridge T.J. (1999) Structures of gram-negative cell walls and their derived membrane vesicles. J. Bacteriol. 181, 4725–4733. https://doi.org/10.1128/jb.181.16.4725-4733.1999
  31. Achouak W., Heulin T., Pagès J.M. (2001) Multiple facets of bacterial porins. FEMS Microbiol. Lett. 199, 1–7. https://doi.org/10.1111/j.1574-6968.2001.tb10642.x
  32. Nickerson K.P., Chanin R.B., Sistrunk J.R., Rasko D.A., Fink P.J., Barry E.M., Nataro J.P., Faherty C.S. (2017) Analysis of Shigella flexneri resistance, biofilm formation, and transcriptional profile in response to bile salts. Infect. Immun. 85, 1–18. https://doi.org/10.1128/iai.01067-16
  33. Mohammed Jajere S.A (2019) Review of Salmonella еnterica with particular focus on the pathogenicity and virulence factors, host specificity and adaptation and antimicrobial resistance including multidrug resistance. Veterinary World. 12, 504–521. https://doi.org/10.14202/vetworld.2019.504-521
  34. Joseph J., Zhang L., Adhikari P., Evans J.D., Ramachandran R. (2023) Avian pathogenic Escherichia coli (APEC) in broiler breeders: an overview. Pathogens. 12. https://doi.org/10.3390/pathogens12111280
  35. Matsuura M. (2013) Structural modifications of bacterial lipopolysaccharide that facilitate gram-negative bacteria evasion of host innate immunity. Front. Immunol. 4, 109. https://doi.org/10.3389/fimmu.2013.00109
  36. Zhao Y., Shao F. (2015) Diverse mechanisms for inflammasome sensing of cytosolic bacteria and bacterial virulence. Curr. Opin. Microbiol. 29, 37–42. https://doi.org/10.1016/j.mib.2015.10.003
  37. Hu X.Y., Yang C., Wang P., Zhang G.L. (2018) ADP-heptose: a new innate immune modulator. Carbohydrate Res. 473. https://doi.org/10.1016/j.carres.2018.12.011
  38. Liu T., Zhang L., Joo D., Sun S.C. (2017) NF-κB signaling in inflammation. Signal Transduct. Targeted Therapy. 2, 17023. https://doi.org/10.1038/sigtrans.2017.23
  39. Adekoya I.A., Guo C.X., Gray-Owen S.D., Cox A.D., Sauvageau J. (2018) D-glycero-β-D-manno-heptose 1-phosphate and D-glycero-β-D-manno-heptose 1,7-biphosphate are both innate immune agonists. J. Immunol. 201, 2385–2391. https://doi.org/10.4049/jimmunol.1801012
  40. Zhou P., She Y., Dong N., Li P., He H., Borio A., Wu Q., Lu S., Ding X., Cao Y., Xu Y., Gao W., Dong M., Ding J., Wang D.C., Zamyatina A., Shao F. (2018) Alpha-kinase 1 is a cytosolic innate immune receptor for bacterial ADP-heptose. Nature. 561, 122–126. https://doi.org/10.1038/s41586-018-0433-3
  41. Pagnout C., Sohm B., Razafitianamaharavo A., Caillet C., Offroy M., Leduc M., Gendre H., Jomini S., Beaussart A., Bauda P., Duval J.F.L. (2019) Pleiotropic effects of rfa-gene mutations on Escherichia coli envelope properties. Sci. Rep. 9, 9696. https://doi.org/10.1038/s41598-019-46100-3
  42. Krüger A., Grüning N.M., Wamelink M.M., Kerick M., Kirpy A., Parkhomchuk D., Bluemlein K., Schweiger M.R., Soldatov A., Lehrach H., Jakobs C., Ralser M. (2011) The pentose phosphate pathway is a metabolic redox sensor and regulates transcription during the antioxidant response. Antioxidants & Redox Signal. 15, 311–324. https://doi.org/10.1089/ars.2010.3797
  43. Серегина Т.А., Петрушанко И.Ю., Зарипов П.И., Кулешова Ю.Д., Лобанов К.В., Шакулов Р.С., Митькевич В.А., Макаров А.А., Миронов А.С. (2023) Низкомолекулярные тиолы как фактор, усиливающий чувствительность мутантов Еscherichia coli с нарушенным синтезом ADP-гептозы к антибиотикам. Молекуляр. биология. 57, 995–1005.
  44. Seregina T.A., Petrushanko I.Yu., Zaripov P.I., Shakulov R.S., Sklyarova A.S., Mitkevich V.A., Makarov A.A., Mironov A.S. (2023) Activation of purine biosynthesis suppresses the sensitivity of E. coli GmhA mutant to antibiotics. Int. J. Mol. Sci. 24. https://doi.org/10.3390/ijms242216070
  45. Mieyal J.J., Chock P.B. (2012) Posttranslational modification of cysteine in redox signaling and oxidative stress: focus on S-glutathionylation. Antioxid. Redox Signal. 16, 471–475. https://doi.org/10.1089/ars.2011.4454
  46. Chai Y.C., Mieyal J. (2023) Glutathione and glutaredoxin – key players in cellular redox homeostasis and signaling. Antioxidants. 12, 1553. https://doi.org/10.3390/antiox12081553
  47. Xiong Y., Uys J.D., Tew K.D., Townsend D.M. (2011) S-glutathionylation: from molecular mechanisms to health outcomes. Antioxid. Redox Signal. 15, 233–270. https://doi.org/10.1089/ars.2010.3540
  48. Moreau F., Desroy N., Genevard J.M., Vongsouthi V., Gerusz V., Le Fralliec G., Oliveira C., Floquet S., Denis A., Escaich S., Wolf K., Busemann M., Aschenbrenner A. (2008) Discovery of new gram-negative antivirulence drugs: structure and properties of novel E. coli WaaC inhibitors. Bioorg. Med. Chem. Lett. 18, 4022–4026. https://doi.org/10.1016/j.bmcl.2008.05.117
  49. Milicaj J., Hassan B.A., Cote J.M., Ramirez-Mondragon C.A., Jaunbocus N., Rafalowski A., Patel K.R., Castro C.D., Muthyala R., Sham Y.Y., Taylor E.A. (2022) Discovery of first-in-class nanomolar inhibitors of heptosyltransferase I reveals a new aminoglycoside target and potential alternative mechanism of action. Sci. Rep. 12, 7302. https://doi.org/10.1038/s41598-022-10776-x
  50. Velkov T., Roberts K., Nation R., Thompson P., Li J. (2013) Pharmacology of polymyxins: new insights into an ’old class of antibiotics. Future Microbiol. 8, 711–724. https://doi.org/10.2217/fmb.13.39
  51. Mahamad Maifiah M., Creek D., Nation R., Forrest A., Tsuji B., Velkov T., Li J. (2017) Untargeted metabolomics analysis reveals key pathways responsible for the synergistic killing of colistin and doripenem combination against Аcinetobacter baumannii. Sci. Rep. 7, 45527. https://doi.org/10.1038/srep45527

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Cell wall structure of Gram-negative bacteria [14, Creative Commons Attribution (CC BY) licence]. ADP-heptose is the link between the polysaccharide chains of the O-antigen and the inner nucleus (ILC) [13]. The structure of LPS mutants that have lost ADP-heptose is unstable due to the absence of negatively charged phosphate groups on heptose residues, which normally stabilise the structure through interaction with positively charged ions. In addition, the cell wall of mutants that have lost ADP-heptose is characterised by increased permeability to hydrophobic compounds [15].

Download (224KB)
3. Fig. 2. Structure of LPS of the cell wall of Gram-negative bacteria. Stages of ADP-heptose biosynthesis from sedoheptulose-7-phosphate. The gmhA, hldE, and gmhB genes are not part of the rfa operon. The subsequent steps of LPS assembly are carried out by enzymes whose genes are combined into two rfa operons. Hep I, II, III, IV are ADP-heptose residues. F - phosphate. CDO - 3-deoxy-D-manno-oct-2-ulosonic acid.

Download (719KB)
4. Fig. 3. Purine biosynthesis as a factor modulating the sensitivity of ADP-heptose mutants. a - Metabolic scheme of the pentose phosphate pathway showing the interrelation of the processes of synthesis of ADP-heptose precursor - sedoheptulose-7-phosphate, ribose-5-phosphate and NADPH reduction. The PurR repressor regulates purine synthesis, starting with the formation of phosphoribosyl pyrophosphate, as well as the serine-glycine pathway (glyA gene), which along with the oxidative branch of the pentose phosphate pathway is the source of NADPH generation. b - Inactivation of ADP-heptose synthesis leads to a ‘deep rough’ phenotype, hypersensitivity to antibiotics and oxidative stress. Activation of purine biosynthesis in bacterial cells with impaired ADP-heptose synthesis suppresses antibiotic sensitivity and oxidative stress [44], Creative Commons Attribution (CC BY) licence. G6F - glucose-6-phosphate, F6F - fructose-6-phosphate, 3-FGA - glyceraldehyde-3-phosphate, F1,6DF - fructose-1,6-diphosphate, DGAP - dihydroxyacetone phosphate, Ru5F - ribulose-5-phosphate, R5F - ribose-5-phosphate, Xi5F - xylose-5-phosphate, C7F - sedoheptulose-7-phosphate, TGF - tetrahydrofolate, CTC - tricarboxylic acid cycle.

Download (560KB)

Copyright (c) 2024 Russian Academy of Sciences