Distribution of Antibiotic Resistance Genes in Microbial Communities: the Impact of Anthropogenic Pollution
- Authors: Sazykin I.S.1, Sazykina M.A.1, Litsevich A.R.1
-
Affiliations:
- Southern Federal University
- Issue: Vol 58, No 6 (2024)
- Pages: 937-952
- Section: ОБЗОРЫ
- URL: https://innoscience.ru/0026-8984/article/view/677877
- DOI: https://doi.org/10.31857/S0026898424060056
- EDN: https://elibrary.ru/HMZHOY
- ID: 677877
Cite item
Abstract
The review considers issues related to the spread of antibiotic resistance genes in environmental microbial communities. “Hotspots” of adaptive evolution, accumulation and spread of antibiotic-resistant bacteria and genetic material of antibiotic resistance are highlighted. Such “hotspots” include anthropogenic ecosystems, such as municipal wastewater treatment plants, municipal solid waste landfills, livestock enterprises, and agrocenoses. The influence of various types of pollutants and biotic factors on enhancement of mutagenesis and horizontal transfer of antibiotic resistance genes is considered. The role of mobile genetic elements in mobilization and accelerated spread of resistance determinants is shown. Special attention is paid to the role of oxidative stress and stress regulons, which are activated for realization and control of molecular genetic mechanisms of adaptive evolution of bacteria and horizontal distribution of genetic material in bacterial populations. Oxidative stress is identified as one of the main activators of genome destabilization and adaptive evolution of bacteria.
Full Text

About the authors
I. S. Sazykin
Southern Federal University
Author for correspondence.
Email: samara@sfedu.ru
Russian Federation, Rostov-on-Don, 344006
M. A. Sazykina
Southern Federal University
Email: samara@sfedu.ru
Russian Federation, Rostov-on-Don, 344006
A. R. Litsevich
Southern Federal University
Email: samara@sfedu.ru
Russian Federation, Rostov-on-Don, 344006
References
- Walsh F., Duffy B. (2013) The culturable soil antibiotic resistome: a community of multi-drug resistant bacteria. PloS One. 8(6), e65567. https://doi.org/10.1371/journal.pone.0065567
- Pepper I.L. (2013) The soil health-human health nexus. Crit. Rev. Environ. Sci. Technol. 43(24), 2617–2652. https://doi.org/10.1080/10643389.2012.694330
- Adu-Oppong B., Gasparrini A. J., Dantas G. (2017) Genomic and functional techniques to mine the microbiome for novel antimicrobials and antimicrobial resistance genes. Ann. N. Y. Acad. Sci. 1388(1), 42–58. https://doi.org/10.1111/nyas.13257
- Hu Y., Yang X., Li J., Lv N., Liu F., Wu J., Lin I. Y., Wu N., Weimer B. C., Gao G. F., Liu Y., Zhu B. (2016) The bacterial mobile resistome transfer network connecting the animal and human microbiomes. Appl. Environ. Microbiol. 82(22), 6672–6681. https://doi.org/10.1128/AEM.01802-16
- Hsu C., Hsu B., Ji W., Chen J., Hsu T., Ji D., Tseng S., Chiu Y., Kao P., Huang Y. (2015) Antibiotic resistance pattern and gene expression of nontyphoid Salmonella in riversheds. Environ. Sci. Pollut. Res. 22, 7843–7850. https://doi.org/10.1007/s11356-014-4033-y
- Pruden A., Pei R., Storteboom H., Carlson K. H. (2006) Antibiotic resistance genes as emerging contaminants: studies in Northern Colorado. Environ. Sci. Technol. 40, 7445–7450. https://doi.org/10.1021/es060413l
- Graham D.W., Knapp C.W., Christensen B.T., McCluskey S., Dolfing J. (2016) Appearance of beta-lactam resistance genes in agricultural soils and clinical isolates over the 20th century. Sci. Rep. 6(1), 21550. https://doi.org/10.1038/srep21550
- Knapp C.W., Dolfing J., Ehlert P.A., Graham D.W. (2010) Evidence of increasing antibiotic resistance gene abundances in archived soils since 1940. Environ. Sci. Technol. 44(2), 580–587. https://doi.org/10.1021/es901221x
- Gaze W.H., Krone S.M., Joakim Larrson D.G., Li X.Z., Robinson J.A., Simonet P., Smalla K., Timinouni M., Topp E., Wellington E.M., Wright G.D., Zhu Y.G. (2013) Influence of humans on evaluation and mobilization of environmental antibiotic resistance. Emerging Infect. Dis. 19(7), e120871. https://doi: 10.3201/ eid1907.120871
- Zhang R., Yang S., An Y., Wang Y., Lei Y., Song, L. (2022) Antibiotics and antibiotic resistance genes in landfills: a review. Sci. Total Environ. 806(2), 150647. https://doi.org/10.1016/j.scitotenv.2021.150647
- Nowrotek M., Jalowiecki L., Harnisz M., Plaza G. A. (2019) Culturomics and metagenomics: in understanding of environmental resistome. Front. Environ. Sci. Eng. 13, 12. https://doi.org/10.1007/s11783-019-1121-8
- Li B., Yang Y., Ma L.P., Ju F., Guo F., Tiedje J.M., Zhang T. (2015) Metagenomic and network analysis reveal wide distribution and co-occurrence of environmental antibiotic resistance genes. ISME J. 9, 2490–2502. https://doi.org/10.1038/ismej.2015.59
- Yang Y., Li B., Ju F., Zhang T. (2013) Exploring variation of antibiotic resistance genes in activated sludge over a four-year period through a metagenomic approach. Environ. Sci. Technol. 47, 10197–10205. https://doi.org/10.1021/es4017365
- Yang Y., Li B., Zou S.C., Fang H.H.P., Zhang T. (2014) Fate of antibiotic resistance genes in sewage treatment plant revealed by metagenomic approach. Water Res. 62, 97–106. https://doi.org/10.1016/j.watres.2014.05.019
- Zhao R.X., Feng J., Yin X.L., Liu J., Fu W.J., Berendonk T.U., Zhang T., Li X., Li B. (2018) Antibiotic resistome in landfill leachate from different cities of China deciphered by metagenomic analysis. Water Res. 134, 126–139. https://doi.org/10.1016/j.watres.2018.01.063
- Liu X., Yang S., Wang Y.Q., Zhao H.P., Song L.Y. (2018) Metagenomic analysis of antibiotic resistance genes (ARGs) during refuse decomposition. Sci. Total Environ. 634, 1231–1237. https://doi.org/10.1016/j.scitotenv.2018.04.048
- Gorecki A., Decewicz P., Dziurzynski M., Janeczko A., Drewniak L., Dziewit L. (2019) Literature-based, manually-curated database of PCR primers for the detection of antibiotic resistance genes in various environments. Water Res. 161, 211–221. https://doi.org/10.1016/j.watres.2019.06.009
- Chen Q.L., Li H., Zhou X.Y., Zhao Y., Su J.Q., Zhang X., Huang F.Y. (2017) An underappreciated hotspot of antibiotic resistance: the groundwater near the municipal solid waste landfill. Sci. Total Environ. 609, 966–973. https://doi.org/10.1016/j.scitotenv.2017.07.164
- Rizzo L., Manaia C., Merlin C., Schwartz T., Dagot C., Ploy M. C., Michael I., Fatta-Kassinos D. (2013) Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: a review. Sci. Total Environ. 447, 345–360. https://doi.org/10.1016/j.scitotenv.2013.01.032
- Ferro G., Guarino F., Castiglione S., Rizzo L. (2016) Antibiotic resistance spread potential in urban wastewater effluents disinfected by UV/H2O2 process. Sci. Total Environ. 560–561, 29–35. https://doi.org/10.1016/j.scitotenv.2016.04.047
- Manaia C.M., Rocha J., Scaccia N., Marano R., Radu E., Biancullo F., Cerqueira F., Fortunato G., Iakovides I. C., Zammit I., Kampouris I., Vaz-Moreira I., Nunes O. C. (2018) Antibiotic resistance in wastewater treatment plants: tackling the black box. Environ. Int. 115, 312–324. https://doi.org/10.1016/j.envint.2018.03.044
- Manaia C.M., Macedo G., Fatta-Kassinos D., Nunes O.C. (2016) Antibiotic resistance in urban aquatic environments: can it be controlled? Appl. Microbiol. Biotechnol. 100, 1543–1557. https://doi.org/10.1007/s00253-015-7202-0
- Di Cesare A., Fontaneto D., Doppelbauer J., Corno G. (2016) Fitness and recovery of bacterial communities and antibiotic resistance genes in urban wastewaters exposed to classical disinfection treatments. Environ. Sci. Technol. 50, 10153–10161. https://doi.org/10.1021/acs.est.6b02268
- Kim S., Yun Z., Ha U.H., Lee S., Park H., Kwon E.E., Cho Y., Choung S., Oh J., Medriano C.A., Chandran K. (2014) Transfer of antibiotic resistance plasmids in pure and activated sludge cultures in the presence of environmentally representative micro-contaminant concentrations. Sci. Total Environ. 468–469, 813–820. https://doi.org/10.1016/j.scitotenv.2013.08.100
- Carraro E., Bonetta S., Bertino C., Lorenzi E., Bonetta S., Gilli G. (2016) Hospital effluents management: chemical, physical, microbiological risks and legislation in different countries. J. Environ. Manage. 168, 185–199. https://doi.org/10.1016/j.jenvman.2015.11.021
- Harris S.J., Cormican M., Cummins C. (2012) Antimicrobial residues and antimicrobial-resistant bacteria: impact on the microbial environment and risk to human health – a review. Hum. Ecol. Risk Assess. 18, 767–809. https://doi.org/10.1080/10807039.2012.688702
- Woolhouse M., Ward M., van Bunnik B., Farrar J. (2015) Antimicrobial resistance in humans, livestock and the wider environment. Philos. Trans. R. Soc. Lond. B Biol. Sci. 370, 20140083. https://doi.org/10.1098/rstb.2014.0083
- Gu Y., Shen S., Han B., Tian X., Zhang K. (2020) Family livestock waste: an ignored pollutant resource of antibiotic resistance genes. Ecotoxicol. Environ. Saf. 197, 110567. https://doi.org/10.1016/j.ecoenv.2020.110567
- Wang Y., Hu Y., Liu F., Cao J., Gao G.F. (2020) Integrated metagenomic and metatranscriptomic profiling reveals differentially expressed resistomes in human, chicken, and pig gut microbiomes. Environ. Int. 138, 105649. https://doi.org/10.1016/j.envint.2020.105649
- Brooks J.P., McLaughlin M.R., Gerba C.P., Pepper I.L. (2012) Land application of manure and Class B biosolids: an occupational and public quantitative microbial risk assessment. J Environ. Qual. 41(6), 2009–2023. https://doi.org/10.2134/jeq2011.0430
- Lin H., Zhang J., Chen H., Wang J., Sun W., Zhang X., Yang Y., Wang Q., Ma J. (2017) Effect of temperature on sulfonamide antibiotics degradation, and on antibiotic resistance determinants and hosts in animal manures. Sci. Total Environ. 607–608, 725–732. https://doi.org/10.1016/j.scitotenv.2017.07.057
- Thanner S., Drissner D., Walsh F. (2016) Antimicrobial resistance in agriculture. mBio. 7, e02227–15. https://doi.org/10.1128/mBio.02227-15
- Xie W.Y., Shen Q., Zhao F.J. (2018) Antibiotics and antibiotic resistance from animal manures to soil: a review. Eur. J. Soil Sci. 69, 181–195. https://doi.org/10.1111/ejss.12494
- Yazdankhah S., Rudi K., Bernhoft A. (2014) Zinc and copper in animal feed – development of resistance and co-resistance to antimicrobial agents in bacteria of animal origin. Microb. Ecol. Health Dis. 25, 1. https://doi.org/10.3402/mehd.v25.25862
- Kivits T., Broers H.P., Beeltje H., van Vliet M., Griffioen J. (2018) Presence and fate of veterinary antibiotics in age-dated groundwater in areas with intensive livestock farming. Environ. Pollut. 241, 988–998. https://doi.org/10.1016/j.envpol.2018.05.085
- Manyi-Loh C.E., Mamphweli S.N., Meyer E.L., Makaka G., Simon M., Okoh A.I. (2016) An overview of the control of bacterial pathogens in cattle manure. Int. J. Environ. Res. Public Health. 13(9), 843. https://doi.org/10.3390/ijerph13090843
- Xiao R., Huang D., Du L., Song B., Yin L., Chen Y., Gao L., Li R., Huang H., Zeng G. (2023) Antibiotic resistance in soil-plant systems: a review of the source, dissemination, influence factors, and potential exposure risks. Sci. Total Environ. 869, 161855. https://doi.org/10.1016/j.scitotenv.2023.161855
- Prestinaci F., Pezzotti P., Pantosti A. (2015) Antimicrobial resistance: a global multifaceted phenomenon. Pathog. Glob. Health. 109, 309–318. https://doi.org/10.1179/2047773215Y.0000000030
- Song L.Y., Li L., Yang S., Lan J.W., He H.J., McElmurry S.P., Zhao Y. (2016) Sulfamethoxazole, tetracycline and oxytetracycline and related antibiotic resistance genes in a large-scale landfill, China. Sci. Total Environ. 551, 9–15. https://doi.org/10.1016/j.scitotenv.2016.02.007
- Wang Y.Q., Tang W., Qiao J., Song L.Y. (2015) Occurrence and prevalence of antibiotic resistance in landfill leachate. Environ. Sci. Pollut. Res. 22, 12525–12533. https://doi.org/10.1007/s11356-015-4514-7
- Wang J.Y., An X.L., Huang F.Y., Su J.Q. (2020) Antibiotic resistome in a landfill leachate treatment plant and effluent-receiving river. Chemosphere. 242, 8. https://doi.org/10.1016/j.chemosphere.2019.125207
- Wu D., Ma R.Q., Wei H.W., Yang K., Xie B. (2018) Simulated discharge of treated landfill leachates reveals a fueled development of antibiotic resistance in receiving tidal river. Environ. Int. 114, 143–151. https://doi.org/10.1016/j.envint.2018.02.049
- Wu Y., Cui E., Zuo Y., Cheng W., Chen H. (2018) Fate of antibiotic and metal resistance genes during two-phase anaerobic digestion of residue sludge revealed by metagenomic approach. Environ. Sci. Pollut. Res. 25, 13956–13963. https://doi.org/10.1007/s11356-018-1598-x
- An X.L., Su J.Q., Li B., Ouyang W.Y., Zhao Y., Chen Q.L., Cui L., Chen H., Gillings M.R., Zhang T., Zhu Y.G. (2018) Tracking antibiotic resistome during wastewater treatment using high throughput quantitative PCR. Environ. Int. 117, 146–153. https://doi.org/10.1016/J.ENVINT.2018.05.011
- Wang J., Wang J., Zhao Z., Chen J., Lu H., Liu G., Zhou J., Guan X. (2017) PAHs accelerate the propagation of antibiotic resistance genes in coastal water microbial community. Environ. Pollut. 231, 1145–1152. https://doi.org/10.1016/J.ENVPOL.2017.07.067
- Zheng D., Yin G., Liu M., Chen C., Jiang Y., Hou L., Zheng Y. (2021) A systematic review of antibiotics and antibiotic resistance genes in estuarine and coastal environments. Sci. Total Environ. 777, 146009. https://doi.org/10.1016/J.SCITOTENV.2021.146009
- Gillings M.R., Gaze W.H., Pruden A., Smalla K., Tiedje J.M., Zhu Y.G. (2015) Using the class 1 integron-integrase gene as a proxy for anthropogenic pollution. ISME J. 9(6), 1269–1279. https://doi.org/10.1038/ismej.2014.226
- Berendonk T.U., Manaia C.M., Merlin C., Fatta-Kassinos D., Cytryn E., Walsh F., Bürgmann H., Sørum H., Norström M., Pons M.N., Kreuzinger N., Huovinen P., Stefani S., Schwartz T., Kisand V., Baquero F., Martinez J.L. (2015) Tackling antibiotic resistance: the environmental framework. Nat. Rev. Microbiol. 13(5), 310–317. https://doi.org/10.1038/nrmicro3439
- Storteboom H., Arabi M., Davis J.G., Crimi B., Pruden A. (2010) Identification of antibiotic-resistance-gene molecular signatures suitable as tracers of pristine river, urban, and agricultural sources. Environ. Sci. Technol. 44(6), 1947–1953. https://doi.org/10.1021/es902893f
- Sazykin I.S., Seliverstova E.Yu., Khmelevtsova L.E., Azhogina T.N., Kudeevskaya E.M., Khammami M.I., Gnennaya N.V., Al-Rammahi A.A.K., Rakin A.V., Sazykina M.A. (2019) Occurrence of antibiotic resistance genes in sewages of Rostov-on-Don and lower Don River. Theor. App. Ecol. 4, 76–82. https://doi.org/10.25750/1995-4301-2019-4-076-082
- Imlay J.A. (2015) Diagnosing oxidative stress in bacteria: not as easy as you might think. Curr. Opin. Microbiol. 24, 124–31. https://doi.org/10.1016/j.mib.2015.01.004
- Li D., Zeng S., He M., Gu A.Z. (2016) Water disinfection byproducts induce antibiotic resistance-role of environmental pollutants in resistance phenomena. Environ. Sci. Technol. 50(6), 3193–3201. https://doi.org/10.1021/acs.est.5b05113
- Li M., He Y., Sun J., Li J., Bai J., Zhang C. (2019) Chronic exposure to an environmentally relevant triclosan concentration induces persistent triclosan resistance but reversible antibiotic tolerance in Escherichia coli. Environ. Sci. Technol. 53(6), 3277–3286. https://doi.org/10.1021/acs.est.8b06763
- Merchel P., Pereira B., Wang X., Tagkopoulos I. (2021) Biocide-induced emergence of antibiotic resistance in Escherichia coli. Front. Microbiol. 12, 640923. https://doi.org/10.3389/fmicb.2021.640923
- Waldron K.J., Robinson N.J. (2009) How do bacterial cells ensure that metalloproteins get the correct metal? Nat. Rev. Microbiol. 7(1), 25–35. https://doi.org/10.1038/nrmicro2057
- Gullberg E., Albrecht L.M., Karlsson C., Sandegren L., Andersson D.I. (2014) Selection of a multidrug resistance plasmid by sublethal levels of antibiotics and heavy metals. mBio. 5(5), e01918–14. https://doi.org/10.1128/mBio.01918-14
- Seiler C., Berendonk T.U. (2012) Heavy metal driven co-selection of antibiotic resistance in soil and water bodies impacted by agriculture and aquaculture. Front. Microbiol. 3, 399. https://doi.org/10.3389/fmicb.2012.00399
- Zhu Y.G., Johnson T.A., Su J.Q., Qiao M., Guo G.X., Stedtfeld R.D., Hashsham S.A., Tiedje J.M. (2013) Diverse and abundant antibiotic resistance genes in Chinese swine farms. Proc. Natl. Acad. Sci. USA. 110, 3435–3440. https://doi.org/10.1073/pnas.1222743110
- Zhao X., Wang J., Zhu L., Wang J. (2019) Field-based evidence for enrichment of antibiotic resistance genes and mobile genetic elements in manure-amended vegetable soils. Sci. Total Environ. 654, 906–913. https://doi.org/10.1016/j.scitotenv.2018.10.446
- Lin H., Sun W., Zhang Z., Chapman S.J., Freitag T.E., Fu J., Zhang X., Ma J. (2016) Effects of manure and mineral fertilization strategies on soil antibiotic resistance gene levels and microbial community in a paddy-upland rotation system. Environ. Pollut. 211, 332–337. https://doi.org/10.1016/j.envpol.2016.01.007
- Li L.G., Xia Y., Zhang T. (2017) Co-occurrence of antibiotic and metal resistance genes revealed in complete genome collection. ISME J. 11(3), 651–662. https://doi.org/10.1038/ismej.2016.155
- Christgen B., Yang Y., Ahammad S.Z., Li B., Rodriquez D.C., Zhang T., Graham D.W. (2015) Metagenomics shows that low-energy anaerobic-aerobic treatment reactors reduce antibiotic resistance gene levels from domestic wastewater. Environ. Sci. Technol. 49(4), 2577–2584. https://doi.org/10.1021/es505521w
- Gu M., Imlay J.A. (2011) The SoxRS response of Escherichia coli is directly activated by redox-cycling drugs rather than by superoxide. Mol. Microbiol. 79(5), 1136–1150. https://doi.org/10.1111/j.1365–2958.2010.07520.x
- Coba de la Peña T., Redondo F.J., Fillat M.F., Lucas M.M., Pueyo J.J. (2013) Flavodoxin overexpression confers tolerance to oxidative stress in beneficial soil bacteria and improves survival in the presence of the herbicides paraquat and atrazine. J. Appl. Microbiol. 115(1), 236–246. https://doi.org/10.1111/jam.12224
- Sazykin I., Naumova E., Azhogina T., Klimova M., Karchava S., Khmelevtsova L., Chernyshenko E., Litsevich A., Khammami M., Sazykina M. (2024) Glyphosate effect on biofilms formation, mutagenesis and stress response of E. сoli. J. Hazard. Mater. 461, 132574. https://doi.org/10.1016/j.jhazmat.2023.132574
- Sazykin I.S., Sazykina M.A., Khmelevtsova L.E., Khammami M.I., Karchava Sh.K., Zhuravlev M.V., Kudeevskaya E.M. (2016) Expression of SOD and production of reactive oxygen species in Acinetobacter calcoaceticus caused by hydrocarbons oxidation. Ann. Microbiol. 66(3), 1039–1045. https://doi.org/10.1007/s13213-015-1188-9
- Sazykin I.S., Sazykina M.A., Khmelevtsova L.E., Seliverstova E.Yu., Karchava Sh.K., Zhuravleva M.V. (2018) Antioxidant enzymes and reactive oxygen species level of the Achromobacter xylosoxidans bacteria during hydrocarbons biotransformation. Arch. Microbiol. 200(7), 1057–1065. https://doi.org/10.1007/s00203-018-1516-0
- Sazykin I., Makarenko M., Khmelevtsova L., Seliverstova E., Rakin A., Sazykina M. (2019) Cyclohexane, naphthalene, and diesel fuel increase oxidative stress, CYP153, sodA, and recA gene expression in Rhodococcus erythropolis. Microbiologyopen. 8(9), e00855. https://doi.org/10.1002/mbo3.855
- Kim J., Park W. (2014) Oxidative stress response in Pseudomonas putida. Appl. Microbiol. Biotechnol. 98(16), 6933–6946. https://doi.org/10.1007/s00253-014-5883-4
- Pérez-Pantoja D., Nikel P.I., Chavarría M., de Lorenzo V. (2013) Endogenous stress caused by faulty oxidation reactions fosters evolution of 2,4-dinitrotoluene-degrading bacteria. PLoS Genet. 9(8), e1003764. https://doi.org/10.1371/journal.pgen.1003764
- Azhogina T., Sazykina M., Konstantinova E., Khmelevtsova L., Minkina T., Antonenko E., Sushkova S., Khammami M., Mandzhieva S., Sazykin I. (2023) Bioaccessible PAH influence on distribution of antibiotic resistance genes and soil toxicity of different types of land use. Environ. Sci. Pollut. Res. 30(5), 12695–12713. https://doi.org/10.1007/s11356-022-23028-2
- Ning Q., Wang D., An J., Ding Q., Huang Z., Zou Y., Wu F., You J. (2022) Combined effects of nanosized polystyrene and erythromycin on bacterial growth and resistance mutations in Escherichia coli. J. Hazard. Mater. 422, 126858. https://doi.org/10.1016/j.jhazmat.2021.126858
- Høiby N., Bjarnsholt T., Givskov M., Molin S., Ciofu O. (2010) Antibiotic resistance of bacterial biofilms. Int. J. Antimicrob. Agents. 35, 322–332. https://doi.org/10.1016/j.ijantimicag.2009.12.011
- Jian Z., Zeng L., Xu T., Sun S., Yan S., Yang L., Huang Y., Jia J., Dou T. (2021) Antibiotic resistance genes in bacteria: occurrence, spread, and control. J. Basic Microbiol. 61(12), 1049–1070. https://doi.org/10.1002/jobm.202100201
- Partridge S.R., Kwong S.M., Firth N., Jensen S.O. (2018) Mobile genetic elements associated with antimicrobial resistance. Clin. Microbiol. Rev. 31, e00088–17. https://doi.org/10.1128/CMR.00088-17
- Vandecraen J., Chandler M., Aertsen A., Houdt R.V. (2017) The impact of insertion sequences on bacterial genome plasticity and adaptability. Crit. Rev. Microbiol. 43, 709–730. https://doi.org/10.1080/1040841X.2017.1303661
- Shintani M., Sanchez Z.K., Kimbara K. (2015) Genomics of microbial plasmids: classification and identification based on replication and transfer systems and host taxonomy. Front. Microbiol. 6, 242. https://doi.org/10.3389/fmicb.2015.00242
- Mao D., Luo Y., Mathieu J., Wang Q., Feng L., Mu Q., Feng C., Alvarez P.J. (2014) Persistence of extracellular DNA in river sediment facilitates antibiotic resistance gene propagation. Environ. Sci. Technol. 48(1), 71–78. https://doi.org/10.1021/es404280v
- Jutkina J., Marathe N.P., Flach C.F., Larsson D.G.J. (2018) Antibiotics and common antibacterial biocides stimulate horizontal transfer of resistance at low concentrations. Sci. Total Environ. 616–617, 172–178. https://doi.org/10.1016/j.scitotenv.2017.10.312
- Li Q., Chang W., Zhang H., Hu D., Wang X. (2019) The role of plasmids in the multiple antibiotic resistance transfer in ESBLs-producing Escherichia coli isolated from wastewater treatment plants. Front. Microbiol. 10, 633. https://doi.org/10.3389/fmicb.2019.00633
- Che Y., Xia Y., Liu L., Li A.D., Yang Y., Zhang T. (2019) Mobile antibiotic resistome in wastewater treatment plants revealed by Nanopore metagenomic sequencing. Microbiome. 7(1), 44. https://doi.org/10.1186/s40168-019-0663-0
- Scanlan P.D. (2017) Bacteria-bacteriophage coevolution in the human gut: implications for microbial diversity and functionality. Trends Microbiol. 25, 614–623. https://doi.org/10.1016/j.tim.2017.02.012
- Chen J., Quiles-Puchalt N., Chiang Y.N., Bacigalupe R., Fillol-Salom A., Chee M.S.J., Fitzgerald J.R., Penadés J.R. (2018) Genome hypermobility by lateral transduction. Science. 362, 207–212. https://doi.org/10.1126/science.aat5867
- Davies M.R., Holden M.T., Coupland P., Chen J.H., Venturini C., Barnett T.C., Zakour N.L., Tse H., Dougan G., Yuen K.Y., Walker M.J. (2015) Emergence of scarlet fever Streptococcus pyogenes emm12 clones in Hong Kong is associated with toxin acquisition and multidrug resistance. Nat. Genet. 47, 84–87. https://doi.org/10.1038/ng.3147
- Haaber J., Penadés J.R., Ingmer H. (2017) Transfer of antibiotic resistance in Staphylococcus aureus. Trends Microbiol. 25, 893‒905. https://doi.org/10.2217/17460913.2.3.323
- Shapiro O.H., Kushmaro A., Brenner A. (2010) Bacteriophage predation regulates microbial abundance and diversity in a full-scale bioreactor treating industrial wastewater. ISME J. 4(3), 327–336. https://doi.org/10.1038/ismej.2009.118
- Colomer-Lluch M., Calero-Caceres W., Jebri S., Hmaied F., Muniesa M., Jofre J. (2014) Antibiotic resistance genes in bacterial and bacteriophage fractions of Tunisian and Spanish wastewaters as markers to compare the antibiotic resistance patterns in each population. Environ. Int. 73, 167–175. https://doi.org/10.1016/j.envint.2014.07.003
- Calero-Caceres W., Muniesa M. (2016) Persistence of naturally occurring antibiotic resistance genes in the bacteria and bacteriophage fractions of wastewater. Water Res. 95, 11–18. https://doi.org/10.1016/j.watres.2016.03.006
- Thingstad T.F. (2000) Elements of a theory for the mechanisms controlling abundance, diversity, and biogeochemical role of lytic bacterial viruses in aquatic systems. Limnol. Oceanogr. 45(6), 1320–1328. https://doi.org/10.4319/lo.2000.45.6.1320
- Lang A.S., Westbye A.B., Beatty J.T. (2017) The distribution, evolution, and roles of gene transfer agents in prokaryotic genetic exchange. Annu. Rev. Virol. 4, 87–104. https://doi.org/10.1146/annurev-virology-101416-041624
- Solioz M., Marrs B. (1977) The gene transfer agent of Rhodopseudomonas capsulata. Purification and characterization of its nucleic acid. Arch. Biochem. Biophys. 181, 300–307. https://doi.org/10.1016/0003-9861(77)90508-2
- Brown-Jaque M., Calero-Cáceres W., Muniesa M. (2015) Transfer of antibiotic-resistance genes via phage-related mobile elements. Plasmid. 79, 1–7. https://doi.org/10.1016/j.plasmid.2015.01.001
- Lang A.S., Zhaxybayeva O., Beatty J.T. (2012) Gene transfer agents: phage-like elements of genetic exchange. Nat. Rev. Microbiol. 10, 472–482. https://doi.org/10.1038/nrmicro2802
- Guy L., Nystedt B., Toft C., Zaremba-Niedzwiedzka K., Berglund E.C., Granberg F., Näslund K., Eriksson A.S., Andersson S.G. (2013) A gene transfer agent and a dynamic repertoire of secretion systems hold the keys to the explosive radiation of the emerging pathogen Bartonella. PLoS Genet. 9, e1003393. https://doi.org/10.1371/journal.pgen.1003393
- McDaniel L.D, Young E., Delaney J., Ruhnau F., Ritchie K.B., Paul J.H. (2010) High frequency of horizontal gene transfer in the oceans. Science. 330, 50. https://doi.org/10.1126/science.1192243
- Marrs B. (1974) Genetic recombination in Rhodopseudomonas capsulata. Proc. Natl. Acad. Sci. USA. 71, 971–973. https://doi.org/ 10.1073/pnas.71.3.971
- Bárdy P., Füzik T., Hrebík D., Plevka P. (2020) Structure and mechanism of DNA delivery of a gene transfer agent. Nat. Commun. 11, 3034. https://doi.org/10.1038/s41467-020-16669-9
- Mirajkar N.S., Gebhart C.J. (2014) Understanding the molecular epidemiology and global relationships of Brachyspira hyodysenteriae from swine herds in the United States: a multi-locus sequence typing approach. PLoS One. 9, e107176. https://doi.org/10.1371/journal.pone.0107176
- Christensen S., Serbus L.R. (2020) Gene transfer agents in symbiotic microbes. Results Probl. Cell Differ. 69, 25–76. https://doi.org/10.1007/978-3-030-51849-3_2
- Baharoglu Z., Mazel D. (2014) SOS, the formidable strategy of bacteria against aggressions. FEMS Microbiol. Rev. 38(6), 1126–1145. https://doi.org/10.1111/1574-6976.12077
- Napolitano R., Janel-Bintz R., Wagner J., Fuchs R.P. (2000) All three SOS-inducible DNA polymerases (Pol II, Pol IV and Pol V) are involved in induced mutagenesis. EMBO J. 19(22), 6259–6265. https://doi.org/10.1093/emboj/19.22.6259
- Pagès V., Fuchs R.P. (2003) Uncoupling of leading- and lagging-strand DNA replication during lesion bypass in vivo. Science. 300(5623), 1300–1303. https://doi.org/10.1126/science.1083964
- Baharoglu Z., Mazel D. (2011) Vibrio cholerae triggers SOS and mutagenesis in response to a wide range of antibiotics: a route towards multiresistance. Antimicrob. Agents Chemother. 55(5), 2438–2441. https://doi.org/10.1128/AAC.01549-10
- Boles B.R., Singh P.K. (2008) Endogenous oxidative stress produces diversity and adaptability in biofilm communities. Proc. Natl. Acad. Sci. USA. 105(34), 12503–12508. https://doi.org/10.1073/pnas.0801499105
- Chen X., Yin H., Li G., Wang W., Wong P.K., Zhao H., An T. (2019) Antibiotic-resistance gene transfer in antibiotic-resistance bacteria under different light irradiation: implications from oxidative stress and gene expression. Water Res. 149, 282–291. https://doi.org/10.1016/j.watres.2018.11.019
- Hocquet D., Llanes C., Thouverez M., Kulasekara H.D., Bertrand X., Plésiat P., Mazel D., Miller S.I. (2012) Evidence for induction of integron-based antibiotic resistance by the SOS response in a clinical setting. PLoS Pathog. 8 (6), e1002778. https://doi.org/10.1371/journal.ppat.1002778
- Soucy S.M., Huang J., Gogarten J.P. (2015) Horizontal gene transfer: building the web of life. Nat. Rev. Genet. 16, 472–482. https://doi.org/10.1038/nrg3962
- Schönknecht G., Chen W.H., Ternes C.M., Barbier G.G., Shrestha R.P., Stanke, M., Bräutigam A., Baker B.J., Banfield J.F., Garavito R.M., Carr K., Wilkerson C., Rensing S.A., Gagneul D., Dickenson N.E., Oesterhelt C., Lercher M.J., Weber A.P. (2013) Gene transfer from bacteria and archaea facilitated evolution of an extremophilic eukaryote. Science. 339, 1207–1210. https://doi.org/10.1126/science.1231707
- Lin M., Kussell E. (2019) Inferring bacterial recombination rates from large-scale sequencing datasets. Nat. Methods. 16, 199–204. https://doi.org/10.1038/s41592-018-0293-7
- Niehus R., Mitri S., Fletcher A.G., Foster K.R. (2015) Migration and horizontal gene transfer divide microbial genomes into multiple niches. Nat. Commun. 6, 8924. https://doi.org/10.1038/ncomms9924
- Power J.J., Pinheiro F., Pompei S., Kovacova V., Yüksel M., Rathmann I., Förster M., Lässig M., Maier B. (2021) Adaptive evolution of hybrid bacteria by horizontal gene transfer. Proc. Natl. Acad. Sci. USA. 118, e2007873118. https://doi.org/ 10.1073/pnas.2007873118
- Chiang S.M., Schellhorn H.E. (2012) Regulators of oxidative stress response genes in Escherichia coli and their functional conservation in bacteria. Arch. Biochem. Biophys. 525(2), 161–169. https://doi.org/10.1016/j.abb.2012.02.007
- Moore J.M., Correa R., Rosenberg S.M., Hastings P.J. (2017) Persistent damaged bases in DNA allow mutagenic break repair in Escherichia coli. PLoS Genet. 13(7), e1006733. https://doi.org/10.1371/journal.pgen.1006733
- Pribis J.P., García-Villada L., Zhai Y., Lewin-Epstein O., Wang A.Z., Liu J., Xia J., Mei Q., Fitzgerald D.M., Bos J., Austin R.H., Herman C., Bates D., Hadany L., Hastings P.J., Rosenberg S. M. (2019) Gamblers: an antibiotic-induced evolvable cell subpopulation differentiated by reactive-oxygen-induced general stress response. Mol. Cell. 74(4), 785–800.e7. https://doi.org/10.1016/j.molcel.2019.02.037
- Bos J., Zhang Q., Vyawahare S., Rogers E.., Rosenberg S.M., Austin R.H. (2015) Emergence of antibiotic resistance from multinucleated bacterial filaments. Proc. Natl. Acad. Sci. USA. 112(1), 178–183. https://doi.org/10.1073/pnas.1420702111
- Glaeser J., Zobawa M., Lottspeich F., Klug G. (2007) Protein synthesis patterns reveal a complex regulatory response to singlet oxygen in Rhodobacter. J. Proteome Res. 6, 2460–2471. https://doi.org/10.1021/pr060624p
- Campbell E.A., Greenwell R., Anthony J.R., Wang S., Lim L., Das K., Sofia H.J., Donohue T.J., Darst S.A. (2007) A conserved structural module regulates transcriptional responses to diverse stress signals in bacteria. Mol. Cell. 27, 793–805. https://doi.org/10.1016/j.molcel.2007.07.009
- Nuss A.M., Glaeser J., Klug G. (2009) RpoHII activates oxidative-stress defense systems and is controlled by RpoE in the singlet oxygen-dependent response in Rhodobacter sphaeroides. J. Bacteriol. 191, 220–230. https://doi.org/10.1128/JB.00925-08
- Nuss A.M., Glaeser J., Berghoff B.A., Klug G. (2010) Overlapping alternative sigma factor regulons in the response to singlet oxygen in Rhodobacter sphaeroides. J. Bacteriol. 192, 2613–2623. https://doi.org/10.1128/JB.01605-09
- Adnan F., Weber L., Klug G. (2015) The sRNA SorY confers resistance during photooxidative stress by affecting a metabolite transporter in Rhodobacter sphaeroides. RNA Biol. 12, 569–577. https://doi.org/10.1080/15476286.2015.1031948
- Peng T., Berghoff B.A., Oh J.I., Weber L., Schirmer J., Schwarz J., Glaeser J., Klug G. (2016) Regulation of a polyamine transporter by the conserved 3′ UTR-derived sRNA SorX confers resistance to singlet oxygen and organic hydroperoxides in Rhodobacter sphaeroides. RNA Biol. 13, 988–999. https://doi.org/10.1080/15476286.2016.1212152
- Jitprasutwit S., Ong C., Juntawieng N., Ooi W.F., Hemsley C.M., Vattanaviboon P., Titball R.W., Tan P., Korbsrisate S. (2014) Transcriptional profiles of Burkholderia pseudomallei reveal the direct and indirect roles of Sigma E under oxidative stress conditions. BMC Genomics. 15(1), 787. https://doi.org/10.1186/1471-2164-15-787
- Ahmed M.N., Porse A., Abdelsamad A., Sommer M., Høiby N., Ciofu O. (2019) lack of the major multifunctional catalase KatA in Pseudomonas aeruginosa accelerates evolution of antibiotic resistance in ciprofloxacin-treated biofilms. Antimicrob. Agents Chemother. 63(10), e00766–19. https://doi.org/10.1128/AAC.00766-19
- Tavita K., Mikkel K., Tark-Dame M., Jerabek H., Teras R., Sidorenko J., Tegova R., Tover A., Dame R.T., Kivisaar M. (2012) Homologous recombination is facilitated in starving populations of Pseudomonas putida by phenol stress and affected by chromosomal location of the recombination target. Mutat. Res. 737(1–2), 12–24. https://doi.org/10.1016/j.mrfmmm.2012.07.004
- Akkaya Ö., Pérez-Pantoja D.R., Calles B., Nikel P.I., de Lorenzo V. (2018) The metabolic redox regime of Pseudomonas putida tunes its evolvability toward novel xenobiotic substrates. MBio. 9(4), e01512–18. https://doi.org/10.1128/mBio.01512-18
- Akkaya Ö., Nikel P.I., Pérez-Pantoja D., de Lorenzo V. (2019) Evolving metabolism of 2,4-dinitrotoluene triggers SOS-independent diversification of host cells. Environ. Microbiol. 21(1), 314–326. https://doi.org/10.1111/1462-2920.14459
Supplementary files
