Antibiotic Resistance Genes in Cattle Gut Mictobiota: Influence of Housing Conditions
- Authors: Begmatov S.A.1, Beletsky A.V.1, Rakitin A.L.1, Lukina A.P.2, Sokolyanskaya L.O.2, Rakitin A.V.2, Glukhova L.B.2, Mardanov A.V.1, Karnachuk O.V.2, Ravin N.V.1
-
Affiliations:
- Research Center of Biotechnology of the Russian Academy of Sciences
- Tomsk State University
- Issue: Vol 58, No 6 (2024)
- Pages: 996-1006
- Section: ГЕНОМИКА. ТРАНСКРИПТОМИКА
- URL: https://innoscience.ru/0026-8984/article/view/677889
- DOI: https://doi.org/10.31857/S0026898424060105
- EDN: https://elibrary.ru/IALWAS
- ID: 677889
Cite item
Abstract
Resistance to antimicrobial drugs is an urgent problem not only in public health, but also in animal husbandry. The widespread use of antimicrobials in feed additives is one of the main reasons for the rapid spread of antibiotic resistance in the microbiota of the gastrointestinal tract of farm animals. To characterize antibiotic resistance genes (resistome), we performed metagenomic analysis of feces of 24 cattle from different regions of Russia, including cows of different breeds and yaks. Animals differed in the type of housing: year-round on pastures or in barns of conventional farms, with consumption of feed additives. Although genes of resistance to aminoglycosides, β-lactams, glycopeptides, MLS antibiotics (macrolides, lincosamides and streptogramins), phenicols and tetracyclines were detected in samples from both groups of animals, the content of resistome in the fecal microbiome of stall-bred cattle was about 10 times higher than in animals kept on pastures. The resistome of stall cattle was dominated by β-lactamases and tetracycline resistance genes, whose content in the microbiome was 24 and 60 times higher, respectively, than in animals kept on pastures. Apparently, the spread of resistance to β-lactams and tetracyclines in stall cattle reflects the active use of these antibiotics in livestock production. Metagenomic analysis of livestock feces can be used to quantify antibiotic resistance genes for the purpose of monitoring antimicrobial drugs used in animal husbandry.
Keywords
Full Text

About the authors
Sh. A. Begmatov
Research Center of Biotechnology of the Russian Academy of Sciences
Author for correspondence.
Email: shabegmatov@gmail.com
Russian Federation, Moscow, 119071
A. V. Beletsky
Research Center of Biotechnology of the Russian Academy of Sciences
Email: shabegmatov@gmail.com
Russian Federation, Moscow, 119071
A. L. Rakitin
Research Center of Biotechnology of the Russian Academy of Sciences
Email: shabegmatov@gmail.com
Russian Federation, Moscow, 119071
A. P. Lukina
Tomsk State University
Email: shabegmatov@gmail.com
Russian Federation, Tomsk, 634050
L. O. Sokolyanskaya
Tomsk State University
Email: shabegmatov@gmail.com
Russian Federation, Tomsk, 634050
A. V. Rakitin
Tomsk State University
Email: shabegmatov@gmail.com
Russian Federation, Tomsk, 634050
L. B. Glukhova
Tomsk State University
Email: shabegmatov@gmail.com
Russian Federation, Tomsk, 634050
A. V. Mardanov
Research Center of Biotechnology of the Russian Academy of Sciences
Email: shabegmatov@gmail.com
Russian Federation, Moscow, 119071
O. V. Karnachuk
Tomsk State University
Email: shabegmatov@gmail.com
Russian Federation, Tomsk, 634050
N. V. Ravin
Research Center of Biotechnology of the Russian Academy of Sciences
Email: shabegmatov@gmail.com
Russian Federation, Moscow, 119071
References
- Ferri M., Ranucci E., Romagnoli P., Giaccone V. (2017) Antimicrobial resistance: a global emerging threat to public health systems. Crit. Rev. Food Sci. Nutr. 57(13), 2857–2876.
- Poirel L., Madec J.Y., Lupo A., Schink A.K., Kieffer N., Nordmann P., Schwarz S. (2018) Antimicrobial resistance in Escherichia coli. Microbiol. Spectr. 6(4). https://doi.org/10.1128/microbiolspec.ARBA-0026-2017
- Shrestha P., Cooper B. S., Coast J., Oppong R., Do Thi Thuy N., Phodha T., Celhay O., Guerin P. J., Wertheim H., Lubell Y. (2018) Enumerating the economic cost of antimicrobial resistance per antibiotic consumed to inform the evaluation of interventions affecting their use. Antimicrob. Resist. Infect. Control. 7, 98.
- Van Boeckel T.P., Glennon E.E., Chen D., Gilbert M., Robinson T.P., Grenfell B.T., Levin S.A., Bonhoeffer S., Laxminarayan R. (2017) Reducing antimicrobial use in food animals. Science. 357, 1350–1352.
- Mendelsohn E., Ross N., Zambrana-Torrelio C., Van Boeckel T.P., Laxminarayan R., Daszak P. (2023) Global patterns and correlates in the emergence of antimicrobial resistance in humans. Proc. Biol. Sci. 290, 20231085.
- Xu Q., Qiao Q., Gao Y., Hou J., Hu M., Du Y., Zhao K., Li X. (2021) Gut microbiota and their role in health and metabolic disease of dairy cow. Front. Nutr. 8, 701511.
- Lim S.K., Kim D., Moon D.C., Cho Y., Rho M. (2020) Antibiotic resistomes discovered in the gut microbiomes of Korean swine and cattle. Gigascience. 9, giaa043.
- Zhu Z., Cao M., Wang W., Zhang L., Ma T., Liu G., Zhang Y., Shang Z., Chen X., Shi Y., Zhang J. (2020) Exploring the prevalence and distribution patterns of antibiotic resistance genes in bovine gut microbiota using a metagenomic approach. Microb. Drug Resist. 27, 980–990.
- Wang W., Wei X., Wu L., Shang X., Cheng F., Li B., Zhou X., Zhang J. (2023) The occurrence of antibiotic resistance genes in the microbiota of yak, beef and dairy cattle characterized by a metagenomic approach. J. Antibiot. (Tokyo). 74, 508‒518.
- Begmatov S., Beletsky A.V., Gruzdev E.V., Mardanov A.V., Glukhova L.B., Karnachuk O.V., Ravin N.V. (2022) Distribution patterns of antibiotic resistance genes and their bacterial hosts in a manure lagoon of a large-scale swine finishing facility. Microorganisms. 10(11), 2301.
- Frey B., Rime T., Phillips M., Stierli B., Hajdas I., Widmer F., Hartmann M. (2016) Microbial diversity in European alpine permafrost and active layers. FEMS Microbiol. Ecol. 92(3), fiw018.
- Magoc T., Salzberg S. (2011) FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics. 27, 2957–2963.
- Edgar R.C. (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 26, 2460–2461.
- Rognes T., Flouri T., Nichols B., Quince C., Mahé F. (2016) VSEARCH: a versatile open source tool for metagenomics. PeerJ. 4, 2584.
- Quast C., Pruesse E., Yilmaz P., Gerken J., Schweer T., Yarza P., Peplies J., Glöckner F.O. (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41(Database issue), D590–6.
- Martin M. (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 1, 10–12.
- Li D., Luo R., Liu C.M., Leung C.M., Ting H.F., Sadakane K., Yamashita H., Lam T. W. (2016) MEGAHIT v1.0: a fast and scalable metagenome assembler driven by advanced methodologies and community practices. Methods. 102, 3–11.
- Kang D.D., Li F., Kirton E., Thomas A., Egan R., An H., Wang Z. (2019) MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ. 7, e7359.
- Parks D.H., Imelfort M., Skennerton C.T., Hugenholtz P., Tyson G.W. (2015) CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055.
- Chaumeil P.A., Mussig A.J., Hugenholtz P., Parks D.H. (2019) GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics. 36, 1925–1927.
- Parks D.H., Chuvochina M., Chaumeil P.A., Rinke C., Mussig A.J., Hugenholtz P. (2020) A complete domain-to-species taxonomy for Bacteria and Archaea. Nat. Biotechnol. 38, 1079–1086.
- Langmead B., Salzberg S. (2012) Fast gapped-read alignment with Bowtie 2. Nat. Methods. 9, 357–359.
- Hyatt D., Chen G.L., Locascio P.F., Land M.L., Larimer F.W., Hauser L.J. (2010) Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics. 11, 119.
- Feldgarden M., Brover V., Gonzalez-Escalona N., Frye J.G., Haendiges J., Haft D.H., Hoffmann M., Pettengill J.B., Prasad A.B., Tillman G.E., Tyson G.H., Klimke W. (2021) AMRFinderPlus and the Reference Gene Catalog facilitate examination of the genomic links among antimicrobial resistance, stress response, and virulence. Sci. Rep. 11, 12728.
- Fernando S.C., Purvis H., Najar F., Sukharnikov L., Krehbiel C., Nagaraja T., Roe B., DeSilva U. (2010) Rumen microbial population dynamics during adaptation to a high-grain diet. Appl. Environ. Microbiol. 76, 7482–7490.
- McCann J.C., Luan S., Cardoso F.C., Derakhshani H., Khafipour E., Loor J.J. (2016) Induction of subacute ruminal acidosis affects the ruminal microbiome and epithelium. Front. Microbiol. 7, 701.
- Popova M., Martin C., Eugène M., Mialon M.M., Doreau M., Morgavi D. P. (2011) Effect of fibre- and starch-rich finishing diets on methanogenic Archaea diversity and activity in the rumen of feedlot bulls. Anim. Feed Sci. Technol. 166–167, 113–121.
- Clemmons B.A., Voy B.H., Myer P.R. (2019) Altering the gut microbiome of cattle: considerations of host-microbiome interactions for persistent microbiome manipulation. Microb. Ecol. 77, 523–536.
- Zhao C., Liu X., Tan H., Bian Y., Khalid M., Sinkkonen A., Jumpponen A., Rahman S.U., Du B., Hui N. (2024) Urbanization influences the indoor transfer of airborne antibiotic resistance genes, which has a seasonally dependent pattern. Environ. Int. 185, 108545.
- Lee C., Zaheer R., Munns K., Holman D.B., Van Domselaar G., Zovoilis A., McAllister T.A. (2023) Effect of antimicrobial use in conventional versus natural cattle feedlots on the microbiome and resistome. Microorganisms. 11, 2982.
- Sornplang P., Sakulsawasdiphan K., Piyadeatsoontorn S., Surasorn B. (2016) Antimicrobial susceptibility of lactic acid bacteria isolated from human and food-producing animal feces in Khon Kaen Province, Thailand. Trop. Anim. Health Prod. 48, 1739–1745.
- Monticelli J., Knezevich A., Luzzati R., Di Bella S. (2018) Clinical management of non-faecium non-faecalis vancomycin-resistant enterococci infection. Focus on Enterococcus gallinarum and Enterococcus casseliflavus/flavescens. J. Infect. Chemother. 24, 237–246.
- Rubinstein E., Keynan Y. (2013) Vancomycin-resistant enterococci. Crit. Care Clin. 29, 841–852.
- Zhu Y.G., Johnson T.A., Su J.Q., Qiao M., Guo G.X., Stedtfeld R.D., Hashsham S. A., Tiedje J.M. (2013) Diverse and abundant antibiotic resistance genes in Chinese swine farms. Proc. Natl. Acad. Sci. USA. 110, 3435–3440.
- Li L., Xiao Y., Olsen R.H., Wang C., Meng H., Shi L. (2022) Short- and long-read metagenomics insight into the genetic contexts and hosts of mobile antibiotic resistome in Chinese swine farms. Sci. Total Environ. 827, 154352.
- Zhang J., Lu T., Chai Y., Sui Q., Shen P., Wei Y. (2019) Which animal type contributes the most to the emission of antibiotic resistance genes in large-scale swine farms in China? Sci. Total Environ. 658, 152–159.
- Rabello R.F., Bonelli R.R., Penna B.A., Albuquerque J.P., Souza R.M., Cerqueira A.M.F. (2020) Antimicrobial resistance in farm animals in Brazil: an update overview. Animals (Basel). 10, 552.
- Collis R.M., Burgess S.A., Biggs P.J., Midwinter A.C., French N.P., Toombs-Ruane L., Cookson A. L. (2019) Extended-spectrum beta-lactamase-producing Enterobacteriaceae in dairy farm environments: a New Zealand perspective. Foodborne Pathog. Dis. 16, 5–22.
- Figueiredo R., Henriques A., Sereno R., Mendonça N., da Silva G.J. (2015) Antimicrobial resistance and extended-spectrum β-lactamases of Salmonella enterica serotypes isolated from livestock and processed food in Portugal: an update. Foodborne Pathog. Dis. 12, 110–117.
- Van Boeckel T.P., Pires J., Silvester R., Zhao C., Song J., Criscuolo N.G., Gilbert M., Bonhoeffer S., Laxminarayan R. (2019) Global trends in antimicrobial resistance in animals in low- and middle-income countries. Science. 365, eaaw1944.
Supplementary files
