CpG Traffic Lights are Involved in Active DNA Demethylation

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

DNA methylation is one of the most important mechanisms involved in the epigenetic regulation of gene expression. However, the relationship between DNA methylation and expression is still not fully understood. There are examples where changes in DNA methylation level cause changes in gene expression, and vice versa ‒ changes in expression entail changes in the methylation level. Earlier, we introduced the concept of CpG traffic lights, individual CpG sites whose methylation significantly correlates with expression, and showed their important role in enhancer regulation. Here, we showed that the methylation levels of CpG traffic lights are heterogeneous in the cell population and suggested that this is due to their dynamic demethylation. The observed enrichment of CpG traffic lights with 5-hydroxymethylcytosine (5hmC) and TET2 (Tet methylcytosine dioxygenase 2) localization sites has now confirmed our hypothesis. In order to find out whether the methylation of CpG sites is a cause or a consequence of the expression of the corresponding gene, we applied the method of causal inference. As a result, among the CpG sites, we distinguished those for which methylation was the cause of expression changes and those for which expression changes caused methylation changes. CpG sites of the first type were characterized by more stable methylation levels in different cells and less pronounced demethylation compared to CpG sites of the second type. It was also shown that the proportion of CpG sites whose methylation affected expression was greater in promoter regions than in the gene body, for which methylation was likely to be a consequence of expression. Based on these observations, we can assume that the methylation levels of CpG sites, which determine the expression of the gene associated with them, are stable and work on the principle of a “switch”. Conversely, for expression-dependent CpG sites, methylation levels are dynamic and vary between cells in the population, primarily due to active demethylation.

Full Text

Restricted Access

About the authors

A. V. Lioznova

Research Center of Biotechnology of the Russian Academy of Sciences

Author for correspondence.
Email: ju.medvedeva@gmail.com
Russian Federation, Moscow, 119071

Yu. A. Medvedeva

Research Center of Biotechnology of the Russian Academy of Sciences

Email: ju.medvedeva@gmail.com
Russian Federation, Moscow, 119071

References

  1. Ziller M.J., Gu H., Müller F., Donaghey J., Tsai L.T.Y., Kohlbacher O., De Jager P.L., Rosen E.D., Bennett D.A., Bernstein B.E., Gnirke A., Meissner A. (2013) Charting a dynamic DNA methylation landscape of the human genome. Nature. 500, 477–481.
  2. Schroeder D.I., Blair J.D., Lott P., Yu H.O.K., Hong D., Crary F., Ashwood P., Walker C., Korf I., Robinson W.P., LaSalle J.M. (2013) The human placenta methylome. Proc. Natl. Acad. Sci. USA. 110, 6037–6042.
  3. Loyfer N., Magenheim J., Peretz A., Cann G., Bredno J., Klochendler A., Fox-Fisher I., Shabi-Porat S., Hecht M., Pelet T., Moss J., Drawshy Z., Amini H., Moradi P., Nagaraju S., Bauman D., Shveiky D., Porat S., Dior U., Rivkin G., Or O., Hirshoren N., Carmon E., Pikarsky A., Khalaileh A., Zamir G., Grinbaum R., Abu Gazala M., Mizrahi I., Shussman N., Korach A., Wald O., Izhar U., Erez E., Yutkin V., Samet Y., Rotnemer Golinkin D., Spalding K.L., Druid H., Arner P., Shapiro A.M.J., Grompe M., Aravanis A., Venn O., Jamshidi A., Shemer R., Dor Y., Glaser B., Kaplan T. (2023) A DNA methylation atlas of normal human cell types. Nature. 613, 355–364.
  4. Hernando-Herraez I., Garcia-Perez R., Sharp A.J., Marques-Bonet T. (2015) DNA methylation: insights into human evolution. PLoS Genet. 11, e1005661.
  5. Medvedeva Y.A., Fridman M.V., Oparina N.J., Malko D.B., Ermakova E.O., Kulakovskiy I.V., Heinzel A., Makeev V.J. (2010) Intergenic, gene terminal, and intragenic CpG islands in the human genome. BMC Genomics. 11, 1–16.
  6. Panchin A.Y., Makeev V.J., Medvedeva Y.A. (2016) Preservation of methylated CpG dinucleotides in human CpG islands. Biol. Direct. 11, 1–15.
  7. Pardo L.M., Rizzu P., Francescatto M., Vitezic M., Leday G.G.R., Sanchez J.S., Khamis A., Takahashi H., van de Berg W.D.J., Medvedeva Y.A., van de Wiel M.A., Daub C.O., Carninci P., Heutink P. (2013) Regional differences in gene expression and promoter usage in aged human brains. Neurobiol. Aging. 34, 1825–1836.
  8. Lioznova A.V., Khamis A.M., Artemov A.V., Besedina E., Ramensky V., Bajic V.B., Kulakovskiy I.V., Medvedeva Y.A. (2019) CpG traffic lights are markers of regulatory regions in human genome. BMC Genomics. 20, 102.
  9. Pan X., Li X., Sun J., Xiong Z., Hu H., Ning S., Zhi H. (2022) Enhancer methylation dynamics drive core transcriptional regulatory circuitry in pan-cancer. Oncogene. 41, 3474–3484.
  10. Benetatos L., Vartholomatos G. (2018) Enhancer DNA methylation in acute myeloid leukemia and myelodysplastic syndromes. Cell. Mol. Life Sci. 75, 1999–2009.
  11. Stein R., Razin A., Cedar H. (1982) In vitro methylation of the hamster adenine phosphoribosyltransferase gene inhibits its expression in mouse L cells. Proc. Natl. Acad. Sci. USA. 79, 3418–3422.
  12. Anastasiadi D., Esteve-Codina A., Piferrer F. (2018) Consistent inverse correlation between DNA methylation of the first intron and gene expression across tissues and species. Epigenetics Chromatin. 11, 1–17.
  13. Kang J.G., Park J.S., Ko J.H., Kim Y.S. (2019) Regulation of gene expression by altered promoter methylation using a CRISPR/Cas9-mediated epigenetic editing system. Sci. Rep. 9, 1–12.
  14. Antequera F., Bird A. (1993) CpG islands. EXS. 64, 169–185.
  15. Deaton A.M., Bird A. (2011) CpG islands and the regulation of transcription. Genes Dev. 25, 1010–1022.
  16. Meehan R., Lewis J., Cross S., Nan X., Jeppesen P., Bird A. (1992) Transcriptional repression by methylation of CpG. J. Cell Sci. Suppl. 16, 9–14.
  17. Bird A.P. (1984) DNA methylation versus gene expression. J. Embryol. Exp. Morphol. 83(Suppl), 31–40.
  18. Eckhardt F., Lewin J., Cortese R., Rakyan V.K., Attwood J., Burger M., Burton J., Cox T.V., Davies R., Down T.A., Haefliger C., Horton R., Howe K., Jackson D.K., Kunde J., Koenig C., Liddle J., Niblett D., Otto T., Pettett R., Seemann S., Thompson C., West T., Rogers J., Olek A., Berlin K., Beck S. (2006) DNA methylation profiling of human chromosomes 6, 20 and 22. Nat. Genet. 38, 1378–1385.
  19. Weber M., Hellmann I., Stadler M.B., Ramos L., Pääbo S., Rebhan M., Schübeler D. (2007) Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nat. Genet. 39, 457–466.
  20. Jones P.A. (2012) Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat. Rev. Genet. 13, 484-492.
  21. Sobiak B., Leśniak W. (2019) The effect of single CpG demethylation on the pattern of DNA-protein binding. Int. J. Mol. Sci. 20(4), 914.
  22. Bordagaray M.J., Fernández A., Astorga J., Garrido M., Hernández P., Chaparro A., Lira M.J., Gebicke-Haerter P., Hernández M. (2022) CpG single-site methylation regulates TLR2 expression in proinflammatory PBMCs from apical periodontitis individuals. Front. Immunol. 13, 861665.
  23. Gohno T., Hanamura T., Kurosumi M., Takei H., Yamaguchi Y., Hayashi S.I. (2022) One DNA methylation regulates gene expression of human breast cancer and predicts recurrence. Anticancer Res. 42, 759–766.
  24. Lian B.S.X., Kawasaki T., Kano N., Ori D., Ikegawa M., Isotani A., Kawai T. (2022) Regulation of expression by single CpG methylation in downstream of transcription initiation site. iScience. 25, 104118.
  25. Wu X., Zhang Y. (2017) TET-mediated active DNA demethylation: mechanism, function and beyond. Nat. Rev. Genet. 18, 517–534.
  26. Wu S.C., Zhang Y. (2010) Active DNA demethylation: many roads lead to Rome. Nat. Rev. Mol. Cell Biol. 11, 607–620.
  27. Prasad R., Yen T.J., Bellacosa A. (2021) Active DNA demethylation — the epigenetic gatekeeper of development, immunity, and cancer. Adv. Genet. 2, e10033.
  28. Moore L.D., Le T., Fan G. (2013) DNA methylation and its basic function. Neuropsychopharmacology. 38, 23–38.
  29. Tahiliani M., Koh K.P., Shen Y., Pastor W.A., Bandukwala H., Brudno Y., Agarwal S., Iyer L.M., Liu D.R., Aravind L., Rao A. (2009) Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science. 324, 930–935.
  30. Ito S., D’Alessio A.C., Taranova O.V., Hong K., Sowers L.C., Zhang Y. (2010) Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature. 466, 1129–1133.
  31. Shi D.Q., Ali I., Tang J., Yang W.C. (2017) New insights into 5hmC DNA modification: generation, distribution and function. Front. Genet. 8, 100.
  32. Peters J., Janzing D., Scholkopf B. (2017) Elements of Causal Inference: Foundations and Learning Algorithms. MIT Press.
  33. Pearl J. (2010) An introduction to causal inference. Int. J. Biostat. 6, Article 7. doi: 10.2202/1557–4679.1203
  34. Taylor D.L., Jackson A.U., Narisu N., Hemani G., Erdos M.R., Chines P.S., Swift A., Idol J., Didion J.P., Welch R.P., Kinnunen L., Saramies J., Lakka T.A., Laakso M., Tuomilehto J., Parker S.C.J., Koistinen H.A., Davey Smith G., Boehnke M., Scott L.J., Birney E., Collins F.S. (2019) Integrative analysis of gene expression, DNA methylation, physiological traits, and genetic variation in human skeletal muscle. Proc. Natl. Acad. Sci. USA. 116, 10883–10888.
  35. Hemani G., Tilling K., Davey Smith G. (2017) Orienting the causal relationship between imprecisely measured traits using GWAS summary data. PLoS Genet. 13, e1007081.
  36. Hop P.J., Luijk R., Daxinger L., van Iterson M., Dekkers K.F., Jansen R., BIOS Consortium, van Meurs J.B.J., ’t Hoen P.A.C., Ikram M.A., van Greevenbroek M.M.J., Boomsma D.I., Slagboom P.E., Veldink J.H., van Zwet E.W., Heijmans B.T. (2020) Genome-wide identification of genes regulating DNA methylation using genetic anchors for causal inference. Genome Biol. 21, 220.
  37. Mo X.B., Zhang Y.H., Lei S.F. (2021) Integrative analysis identifies potential causal methylation-mRNA regulation chains for rheumatoid arthritis. Mol. Immunol. 131, 89–96.
  38. Zhang J., Lu H., Zhang S., Wang T., Zhao H., Guan F., Zeng P. (2021) Leveraging methylation alterations to discover potential causal genes associated with the survival risk of cervical cancer in TCGA through a two-stage inference approach. Front. Genet. 12, 667877.
  39. van Eijk K.R., de Jong S., Boks M.P.M., Langeveld T., Colas F., Veldink J.H., de Kovel C.G.F., Janson E., Strengman E., Langfelder P., Kahn R.S., van den Berg L.H., Horvath S., Ophoff R.A. (2012) Genetic analysis of DNA methylation and gene expression levels in whole blood of healthy human subjects. BMC Genomics. 13, 636.
  40. Díez-Villanueva A., Jordà M., Carreras-Torres R., Alonso H., Cordero D., Guinó E., Sanjuan X., Santos C., Salazar R., Sanz-Pamplona R., Moreno V. (2021) Identifying causal models between genetically regulated methylation patterns and gene expression in healthy colon tissue. Clin. Epigenetics. 13, 162.
  41. Pierce B.L., Tong L., Argos M., Demanelis K., Jasmine F., Rakibuz-Zaman M., Sarwar G., Islam M.T., Shahriar H., Islam T., Rahman M., Yunus M., Kibriya M.G., Chen L.S., Ahsan H. (2018) Co-occurring expression and methylation QTLs allow detection of common causal variants and shared biological mechanisms. Nat. Commun. 9, 804.
  42. Jin S.G., Kadam S., Pfeifer G.P. (2010) Examination of the specificity of DNA methylation profiling techniques towards 5-methylcytosine and 5-hydroxymethylcytosine. Nucleic Acids Res. 38, e125.
  43. Field S.F., Beraldi D., Bachman M., Stewart S. K., Beck S., Balasubramanian S. (2015) Accurate measurement of 5-methylcytosine and 5-hydroxymethylcytosine in human cerebellum DNA by oxidative bisulfite on an array (OxBS-array). PLoS One. 10, e0118202.
  44. Qiao Y., Wang X., Wang R., Li Y., Yu F., Yang X., Song L., Xu G., Chin Y.E., Jing N. (2015) AF9 promotes hESC neural differentiation through recruiting TET2 to neurodevelopmental gene loci for methylcytosine hydroxylation. Cell Discovery. 1, 1–19.
  45. Hinrichs A.S., Karolchik D., Baertsch R., Barber G.P., Bejerano G., Clawson H., Diekhans M., Furey T.S., Harte R.A., Hsu F., Hillman-Jackson J., Kuhn R.M., Pedersen J.S., Pohl A., Raney B.J., Rosenbloom K.R., Siepel A., Smith K.E., Sugnet C.W., Sultan-Qurraie A., Thomas D.J., Trumbower H., Weber R.J., Weirauch M., Zweig A.S., Haussler D., Kent W.J. (2006) The UCSC Genome Browser Database: update 2006. Nucleic Acids Res. 34, D590–D598.
  46. Cobo I., Tanaka T.N., Mangalhara K.C., Lana A., Yeang C., Han C., Schlachetzki J., Challcombe J., Fixsen B.R., Sakai M., Li R.Z., Fields H., Mokry M., Tsai R.G., Bejar R., Prange K., de Winther M., Shadel G.S., Glass C.K. (2022) DNA methyltransferase 3 alpha and TET methylcytosine dioxygenase 2 restrain mitochondrial DNA-mediated interferon signaling in macrophages. Immunity. 55, 1386–1401.e10.
  47. Quinlan A.R., Hall I.M. (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 26, 841–842.
  48. Statnikov A., Henaff M., Lytkin N.I., Aliferis C.F. (2012) New methods for separating causes from effects in genomics data. BMC Genomics. 13(Suppl. 8), S22.
  49. Pfister N., Bühlmann P., Schölkopf B., Peters J. (2018) Kernel-based tests for joint independence. J. R. Stat. Soc. Series B Stat. Methodol. 80, 5–31.
  50. Zhang Y., Rohde C., Reinhardt R., Voelcker-Rehage C., Jeltsch A. (2009) Non-imprinted allele-specific DNA methylation on human autosomes. Genome Biol. 10, R138.
  51. Shoemaker R., Deng J., Wang W., Zhang K. (2010) Allele-specific methylation is prevalent and is contributed by CpG-SNPs in the human genome. Genome Res. 20, 883–889.
  52. Rahmani E., Schweiger R., Rhead B., Criswell L.A., Barcellos L.F., Eskin E., Rosset S., Sankararaman S., Halperin E. (2019) Cell-type-specific resolution epigenetics without the need for cell sorting or single-cell biology. Nat. Commun. 10, 3417.
  53. Hackett J.A., Sengupta R., Zylicz J.J., Murakami K., Lee C., Down T.A., Surani M.A. (2013) Germline DNA demethylation dynamics and imprint erasure through 5-hydroxymethylcytosine. Science. 339, 448–452.
  54. Romanova E.I., Zubritskiy A.V., Lioznova A.V., Ogunleye A.J., Golotin V.A., Guts A.A., Lennartsson A., Demidov O.N., Medvedeva Y.A. (2022) RUNX1/CEBPA mutation in acute myeloid leukemia promotes hypermethylation and indicates for demethylation therapy. Int. J. Mol. Sci. 23(19), 11413.
  55. Haerter J.O., Lövkvist C., Dodd I.B., Sneppen K. (2014) Collaboration between CpG sites is needed for stable somatic inheritance of DNA methylation states. Nucleic Acids Res. 42, 2235–2244.
  56. Weinberg D.N., Papillon-Cavanagh S., Chen H., Yue Y., Chen X., Rajagopalan K.N., Horth C., McGuire J.T., Xu X., Nikbakht H., Lemiesz A.E., Marchione D.M., Marunde M.R., Meiners M.J., Cheek M.A., Keogh M.C., Bareke E., Djedid A., Harutyunyan A.S., Jabado N., Garcia B.A., Li H., Allis C.D., Majewski J., Lu C. (2019) The histone mark H3K36me2 recruits DNMT3A and shapes the intergenic DNA methylation landscape. Nature. 573, 281–286.
  57. Emperle M., Bangalore D.M., Adam S., Kunert S., Heil H.S., Heinze K.G., Bashtrykov P., Tessmer I., Jeltsch A. (2021) Structural and biochemical insight into the mechanism of dual CpG site binding and methylation by the DNMT3A DNA methyltransferase. Nucleic Acids Res. 49, 8294–8308.
  58. Jurkowska R.Z., Anspach N., Urbanke C., Jia D., Reinhardt R., Nellen W., Cheng X., Jeltsch A. (2008) Formation of nucleoprotein filaments by mammalian DNA methyltransferase Dnmt3a in complex with regulator Dnmt3L. Nucleic Acids Res. 36, 6656–6663.
  59. Jia D., Jurkowska R.Z., Zhang X., Jeltsch A., Cheng X. (2007) Structure of Dnmt3a bound to Dnmt3L suggests a model for de novo DNA methylation. Nature. 449, 248–251.
  60. Glass J.L., Fazzari M.J., Ferguson-Smith A.C., Greally J.M. (2009) CG dinucleotide periodicities recognized by the Dnmt3a-Dnmt3L complex are distinctive at retroelements and imprinted domains. Mamm. Genome. 20, 633–643.
  61. Ginno P.A., Gaidatzis D., Feldmann A., Hoerner L., Imanci D., Burger L., Zilbermann F., Peters A.H.F.M., Edenhofer F., Smallwood S.A., Krebs A.R., Schübeler D. (2020) A genome-scale map of DNA methylation turnover identifies site-specific dependencies of DNMT and TET activity. Nat. Commun. 11, 1–16.
  62. Suzuki T., Maeda S., Furuhata E., Shimizu Y., Nishimura H., Kishima M., Suzuki H. (2017) A screening system to identify transcription factors that induce binding site-directed DNA demethylation. Epigenetics Chromatin. 10, 60.
  63. Suzuki T., Shimizu Y., Furuhata E., Maeda S., Kishima M., Nishimura H., Enomoto S., Hayashizaki Y., Suzuki H. (2017) RUNX1 regulates site specificity of DNA demethylation by recruitment of DNA demethylation machineries in hematopoietic cells. Blood Adv. 1, 1699–1711.
  64. Thurman R.E., Rynes E., Humbert R., Vierstra J., Maurano M.T., Haugen E., Sheffield N.C., Stergachis A.B., Wang H., Vernot B., Garg K., John S., Sandstrom R., Bates D., Boatman L., Canfield T.K., Diegel M., Dunn D., Ebersol A.K., Frum T., Giste E., Johnson A.K., Johnson E.M., Kutyavin T., Lajoie B., Lee B.K., Lee K., London D., Lotakis D., Neph S., Neri F., Nguyen E.D., Qu H., Reynolds A.P., Roach V., Safi A., Sanchez M.E., Sanyal A., Shafer A., Simon J.M., Song L., Vong S., Weaver M., Yan Y., Zhang Z., Zhang Z., Lenhard B., Tewari M., Dorschner M.O., Hansen R.S., Navas P.A., Stamatoyannopoulos G., Iyer V.R., Lieb J.D., Sunyaev S.R., Akey J.M., Sabo P.J., Kaul R., Furey T.S., Dekker J., Crawford G.E., Stamatoyannopoulos J.A. (2012) The accessible chromatin landscape of the human genome. Nature. 489, 75–82.
  65. Wang H., Maurano M.T., Qu H., Varley K.E., Gertz J., Pauli F., Lee K., Canfield T., Weaver M., Sandstrom R., Thurman R.E., Kaul R., Myers R.M., Stamatoyannopoulos J.A. (2012) Widespread plasticity in CTCF occupancy linked to DNA methylation. Genome Res. 22, 1680–1688.
  66. de Mendoza A., Nguyen T.V., Ford E., Poppe D., Buckberry S., Pflueger J., Grimmer M.R., Stolzenburg S., Bogdanovic O., Oshlack A., Farnham P.J., Blancafort P., Lister R. (2022) Large-scale manipulation of promoter DNA methylation reveals context-specific transcriptional responses and stability. Genome Biol. 23, 1–31.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Appendix
Download (1MB)
3. Fig. 1. Distribution of methylation and expression of genes associated with CpG traffic lights and background positions with a negative Spearman correlation coefficient. The tone reflects the density of points on a logarithmic scale. The distribution is shown for random background CpG positions in the promoter (the number of positions is equal to the number of CpG traffic lights) (a); CpG traffic lights in the promoter (b); random background CpG positions in the body of the gene (c); CpG traffic lights in the body of the gene [+500, TTS] (d). Panel (e) shows the distribution of the proportion of CpG traffic lights and background CpG positions depending on the level of 5hmC in the cerebellar sample.; Panel (e) shows the quantiles of the distribution (e). Panels (g) and (h) show the number of CpG positions colocalized with TET2 signal peaks in two different samples, respectively: neurons differentiated on day 12 (NPC cells) and macrophages derived from monocytes. Here and further in the figures: the error bars correspond to the 5% and 95% percentiles of 50 samples of background positions; for background positions, the median of 50 samples is shown; background. positions — background positions; corr — Spearman correlation coefficient.

Download (701KB)
4. Fig. 2. Analysis of the cause-effect relationships and the distribution of 5hmC depending on the direction of communication. The left panel shows the results of a quantitative analysis of CpG positions, for which the presence of a causal relationship has been revealed. The left column shows the total number of positions, and the column on the right shows the number of positions depending on the direction of communication. The graphs show the number of positions with a causal relationship coefficient for CpG traffic lights and background CpG positions throughout the genome (a) and their refinement — the number of positions depending on the direction of communication (b). Species (c) and (d) show positions in the promoter region [-1000, TSS+500], while species (e) and (e) show positions in the gene body [TSS+500, TTS]. The right panel shows the distribution of 5hmC: (g) — the distribution of the proportion of CpG traffic lights depending on the level of 5hmC for both directions of causation; (h) — quantiles of the distribution in the form (g); (i) — a distribution similar to (g), only for background CpG positions; (k) — quantiles of the distribution in the panel (i).

Download (662KB)
5. Fig. 3. The proposed mechanism of functioning of CpG traffic lights. The left panel shows CpG traffic lights, in which changes in the level of methylation (Me) cause changes in the expression of the associated gene. Such CpG traffic lights are more common in promoters, their methylation is stable and they work according to the “on/off” principle. The right panel shows CpG traffic lights, for which the level of methylation depends on the expression of the gene. Their methylation varies between cells and is dynamic, which is caused by active demethylation. Demethylation occurs under the action of methylcytosine dioxygenase TEST2, which is attracted by transcription factors (TF).

Download (161KB)

Copyright (c) 2024 Russian Academy of Sciences