Взаимосвязь уровней мРНК генов Cxcl12, Tweak, Notch1, Yap в молекулярных механизмах фиброгенеза печени
- Авторы: Лебедева Е.И.1, Щастный А.Т.1, Бабенко А.С.2, Зиновкин Д.А.3
-
Учреждения:
- Витебский ордена Дружбы народов государственный медицинский университет
- Белорусский государственный медицинский университет
- Гомельский государственный медицинский университет
- Выпуск: Том 58, № 1 (2024)
- Страницы: 130-140
- Раздел: МОЛЕКУЛЯРНАЯ БИОЛОГИЯ КЛЕТКИ
- URL: https://innoscience.ru/0026-8984/article/view/655348
- DOI: https://doi.org/10.31857/S0026898424010126
- EDN: https://elibrary.ru/NXGUNP
- ID: 655348
Цитировать
Аннотация
Недостаточная изученность молекулярных механизмов фиброза и цирроза печени не позволяет полностью понять все этапы развития этих патологий. Известно, что огромную роль в реализации функций генов и сигнальных путей играют взаимодействия между ними. Однако сведения о взаимосвязи генов и сигнальных путей недостаточны и часто противоречивы. В настоящей работе впервые детально изучена экспрессия мРНК генов Notch1, Notch2, Yap1, Tweak (Tnfsf12), Fn14 (Tnfrsf12a), Ang, Vegfa, Cxcl12 (Sdf), Nos2 и Mmp-9 на разных стадиях индуцированного тиоацетамидом фиброза печени крыс Wistar. С помощью факторного анализа получены три фактора, которые объединили высоко коррелирующие гены-мишени между собой. Первый фактор включает четыре гена: Cxcl12 (r = 0.829, р < 0.05), Tweak (r = 0.841, р < 0.05), Notch1 (r = 0.848, р < 0.05), Yap1 (r = 0.921, р < 0.05). Второй фактор описывает корреляции между генами Mmp-9 (r = 0.791, р < 0.05) и Notch2 (r = 0.836, р < 0.05). В третий фактор вошли гены Ang (r = 0.748, р < 0.05) и Vegfa (r = 0.679, р < 0.05). Гены Nos2 и Fn14 не вошли ни в один из факторов. Можно предположить, что продукты выбранных генов, классифицированных на основании уровней экспрессии их мРНК, взаимосвязаны в процессах фиброзных изменений печени крыс токсической этиологии. Полученные результаты представляют фундаментальный интерес для изучения патогенетических механизмов развития фиброза и цирроза печени.
Ключевые слова
Полный текст

Об авторах
Е. И. Лебедева
Витебский ордена Дружбы народов государственный медицинский университет
Email: lebedeva.ya-elenale2013@yandex.ru
Белоруссия, Витебск, 210009
А. Т. Щастный
Витебский ордена Дружбы народов государственный медицинский университет
Автор, ответственный за переписку.
Email: lebedeva.ya-elenale2013@yandex.ru
Белоруссия, Витебск, 210009
А. С. Бабенко
Белорусский государственный медицинский университет
Email: lebedeva.ya-elenale2013@yandex.ru
Белоруссия, Минск, 220116
Д. А. Зиновкин
Гомельский государственный медицинский университет
Email: lebedeva.ya-elenale2013@yandex.ru
Белоруссия, Гомель, 246050
Список литературы
- Zhang D., Zhang Y., Sun B. (2022) The molecular mechanisms of liver fibrosis and its potential therapy in application. Int. J. Mol. Sci. 23(20), 12572. doi: 10.3390/ijms232012572
- Graupera I., Isus L., Coll M., Pose E., Díaz A., Vallverdú J., Rubio-Tomás T., Martínez-Sánchez C., Huelin P., Llopis M., Solé C., Fondevila C., Lozano J.J., Sancho-Bru P., Ginès P., Aloy P. (2022) Molecular characterization of chronic liver disease dynamics: from liver fibrosis to acute-on-chronic liver failure. JHEP Rep. 4(6), 100482. doi: 10.1016/j.jhepr.2022.100482
- Kachanova O., Lobov A., Malashicheva A. (2022) The role of the Notch signaling pathway in recovery of cardiac function after myocardial infarction. Int. J. Mol. Sci. 23(20), 12509. doi: 10.3390/ijms232012509
- Yuan C., Ni L., Zhang C., Wu X. (2020) The role of Notch3 signaling in kidney disease. Oxid. Med. Cell Longev. 2020, 1809408. doi: 10.1155/2020/1809408
- Salazar J.L., Yang S.A., Yamamoto S. (2020) Post-developmental roles of notch signaling in the nervous system. Biomolecules. 10(7), 985. doi: 10.3390/biom10070985
- Hosseini-Alghaderi S., Baron M. (2020) Notch3 in development, health and disease. Biomolecules. 10(3), 485. doi: 10.3390/biom10030485
- Chen Y., Gao W.K., Shu Y.Y., Ye J. (2022) Mechanisms of ductular reaction in non-alcoholic steatohepatitis. World J. Gastroenterol. 28(19), 2088‒2099. doi: 10.3748/wjg.v28.i19.2088
- Vera L., Garcia-Olloqui P., Petri E., Viñado A.C., Valera P.S., Blasco-Iturri Z., Calvo I.A., Cenzano I., Ruppert C., Zulueta J.J., Prosper F., Saez B., Pardo-Saganta A. (2021) Notch3 deficiency attenuates pulmonary fibrosis and impedes lung-function decline. Am. J. Respir. Cell Mol. Biol. 64(4), 465‒476. doi: 10.1165/rcmb.2020-0516OC
- Adams J.M., Jafar-Nejad H. (2019) The roles of notch signaling in liver development and disease. Biomolecules. 9(10), 608. doi: 10.3390/biom9100608
- Pelullo M., Zema S., Nardozza F., Checquolo S., Screpanti I., Bellavia D. (2019) Wnt, Notch, and TGF-β pathways impinge on hedgehog signaling complexity: an open window on cancer. Front. Genet. 10, 711. doi: 10.3389/fgene.2019.00711
- Dai Y., Hao P., Sun Z., Guo Z., Xu H., Xue L., Song H., Li Y., Li S., Gao M., Si T., Zhang Y., Qi Y. (2021) Liver knockout YAP gene improved insulin resistance-induced hepatic fibrosis. J. Endocrinol. 249(2), 149‒161. doi: 10.1530/JOE-20-0561
- Yu H.X., Yao Y., Bu F.T., Chen Y., Wu Y.T., Yang Y., Chen X., Zhu Y., Wang Q., Pan X.Y., Meng X.M., Huang C., Li J. (2019) Blockade of YAP alleviates hepatic fibrosis through accelerating apoptosis and reversion of activated hepatic stellate cells. Mol. Immunol. 107, 29‒40. doi: 10.1016/j.molimm.2019.01.004
- Zheng C., Luo J., Yang Y., Dong R., Yu F.X., Zheng S. (2021) YAP activation and implications in patients and a mouse model of biliary atresia. Front. Pediatr. 8, 618226. doi: 10.3389/fped.2020.618226
- He X., Tolosa M.F., Zhang T., Goru S.K., Ulloa Severino L., Misra P.S., McEvoy C.M., Caldwell L., Szeto S.G., Gao F., Chen X., Atin C., Ki V., Vukosa N., Hu C., Zhang J., Yip C., Krizova A., Wrana J.L., Yuen D.A. (2022) Myofibroblast YAP/TAZ activation is a key step in organ fibrogenesis. JCI Insight. 7(4), e146243. doi: 10.1172/jci.insight.146243
- Wang M., Xie Z., Xu J., Feng Z. (2020) TWEAK/Fn14 axis in respiratory diseases. Clin. Chim. Acta. 509, 139‒148. doi: 10.1016/j.cca.2020.06.007
- Dwyer B.J., Jarman E.J., Gogoi-Tiwari J., Ferreira-Gonzalez S., Boulter L., Guest R.V., Kendall T.J., Kurian D., Kilpatrick A.M., Robson A.J., O’Duibhir E., Man T.Y., Campana L., Starkey Lewis P.J., Wigmore S.J., Olynyk J.K., Ramm G.A., Tirnitz-Parker J.E.E., Forbes S.J. (2021) TWEAK/Fn14 signalling promotes cholangiocarcinoma niche formation and progression. J. Hepatol. 74(4), 860‒872. doi: 10.1016/j.jhep.2020.11.018
- Zhang Y., Zeng W., Xia Y. (2021) TWEAK/Fn14 axis is an important player in fibrosis. J. Cell. Physiol. 236(5), 3304‒3316. doi: 10.1002/jcp.30089
- Lin Y., Dong M.Q., Liu Z.M., Xu M., Huang Z.H., Liu H.J., Gao Y., Zhou W. (2022) A strategy of vascular-targeted therapy for liver fibrosis. J. Hepatology. 76(3), 660‒675. doi: 10.1002/hep.32299
- Lefere S., Devisscher L., Geerts A. (2020) Angiogenesis in the progression of non-alcoholic fatty liver disease. Acta Gastroenterol. Belg. 83(2), 301‒307.
- Yang L., Yue W., Zhang H., Zhang Z., Xue R., Dong C., Liu F., Chang N., Yang L., Li L. (2022) Dual targeting of angipoietin-1 and von Willebrand factor by microRNA-671-5p attenuates liver angiogenesis and fibrosis. Hepatol. Commun. 6(6), 1425‒1442. doi: 10.1002/hep4.1888
- Friedman S.L., Pinzani M. (2022) Hepatic fibrosis 2022: unmet needs and a blueprint for the future. Hepatology. 75(2), 473‒488. doi: 10.1002/hep.32285
- Ray P., Stacer A.C., Fenner J., Cavnar S.P., Meguiar K., Brown M., Luker K.E., Luker G.D. (2015) CXCL12-γ in primary tumors drives breast cancer metastasis. Oncogene. 34(16), 2043‒2051. doi: 10.1038/onc.2014.157
- Cui L.N., Zheng X.H., Yu J.H., Han Y. (2021) Role of CXCL12-CXCR4/CXCR7 signal axis in liver regeneration and liver fibrosis. Zhonghua Gan Zang Bing Za Zhi. 29(9), 900‒903. doi: 10.3760/cma.j.cn501113-20200721-00403
- Chiraunyanann T., Changsri K., Sretapunya W., Yuenyongchaiwat K., Akekawatchai C. (2019) CXCL12 G801A polymorphism is associated with significant liver fibrosis in HIV-infected Thais: a cross-sectional study. Asian Pac. J. Allergy Immunol. 37(3), 162‒170. doi: 10.12932/AP-160917-0162
- Zhang J., Li Y., Liu Q., Li R., Pu S., Yang L., Feng Y., Ma L. (2018) SKLB023 as an iNOS inhibitor alleviated liver fibrosis by inhibiting the TGF-beta/Smad signaling pathway. RSC Adv. 8(54), 30919‒30924. doi: 10.1039/c8ra04955f
- Ahmad N., Ansari M.Y., Haqqi T.M. (2020) Role of iNOS in osteoarthritis: рathological and therapeutic aspects. J. Cell Physiol. 235(10), 6366‒6376. doi: 10.1002/jcp.29607
- Kashfi K., Kannikal J., Nath N. (2021) Macrophage reprogramming and cancer therapeutics: role of iNOS-derived NO. Cells. 10(11), 3194. doi: 10.3390/cells10113194
- Tsomidis I., Notas G., Xidakis C., Voumvouraki A., Samonakis D.N., Koulentaki M., Kouroumalis E. (2022) Enzymes of fibrosis in chronic liver disease. Biomedicines. 10(12), 3179. doi: 10.3390/biomedicines10123179
- Lachowski D., Cortes E., Rice A., Pinato D., Rombouts K., Hernandez A.D.R. (2019) Matrix stiffness modulates the activity of MMP-9 and TIMP-1 in hepatic stellate cells to perpetuate fibrosis. Sci. Rep. 9(1), 7299. doi: 10.1038/s41598-019-43759-6
- Maltais L.J., Blake J.A., Chu T., Lutz C.M., Eppig J.T., Jackson I. (2002) Rules and guidelines for mouse gene, allele, and mutation nomenclature: a condensed version. Genomics. 79(4), 471‒474. doi: 10.1006/geno.2002.6747
- Everhart J.E., Wright E.C., Goodman Z.D., Dienstag J.L., Hoefs J.C., Kleiner D.E., Ghany M.G., Mills A.S., Nash S.R., Govindarajan S., Rogers T.E., Greenson J.K., Brunt E.M., Bonkovsky H.L., Morishima C., Litman H.J. (2010) HALT-C Trial Group. Prognostic value of Ishak fibrosis stage: findings from the hepatitis C antiviral long-term treatment against cirrhosis trial. Hepatology. 51(2), 585‒594. doi: 10.1002/hep.23315
- Лебедева Е.И., Щастный А.Т., Бабенко А.С. (2022) Динамика стабильности экспрессии генов sdha, hprt, prl3d1 и hes1 в рамках моделирования фиброза печени крыс. Молекуляр. медицина. 20(2), 53–62. doi: 10.29296/24999490-2022-02-08
- Sharma N., Shaikh T.B., Eedara A., Kuncha M., Sistla R., Andugulapati S.B. (2022) Dehydrozingerone ameliorates thioacetamide-induced liver fibrosis via inhibition of hepatic stellate cells activation through modulation of the MAPK pathway. Eur. J. Pharmacol. 937, 175366. doi: 10.1016/j.ejphar.2022.175366
- Chandrashekar D.V., DuBois B.N., Rashid M., Mehvar R. (2023) Effects of chronic cirrhosis induced by intraperitoneal thioacetamide injection on the protein content and Michaelis-Menten kinetics of cytochrome P450 enzymes in the rat liver microsomes. Basic Clin. Pharmacol. Toxicol. 132(2), 197‒210. doi: 10.1111/bcpt.13813
- Shareef S.H., Al-Medhtiy M.H., Al Rashdi A.S., Aziz P.Y., Abdulla M.A. (2023) Hepatoprotective effect of pinostrobin against thioacetamide-induced liver cirrhosis in rats. Saudi J. Biol. Sci. 30(1), 103506. doi: 10.1016/j.sjbs.2022.103506
- Walther C.P., Benoit J.S. (2021) Tubular kidney biomarker insights through factor analysis. Am. J. Kidney Dis. 78(3), 335‒337. doi: 10.1053/j.ajkd.2021.03.016
- Muthiah M.D., Huang D.Q., Zhou L., Jumat N.H., Choolani M., Chan J.K.Y., Wee A., Lim S.G., Dan Y.Y. (2019) A murine model demonstrating reversal of structural and functional correlates of cirrhosis with progenitor cell transplantation. Sci. Rep. 9(1), 15446. doi: 10.1038/s41598-019-51189-7
- Ezhilarasan D. (2023) Molecular mechanisms in thioacetamide-induced acute and chronic liver injury models. Environ. Toxicol. Pharmacol. 104093. doi: 10.1016/j.etap.2023.104093
- Лебедева Е.И., Щастный А.Т., Бабенко А.С. (2022) Взаимное снижение уровня мРНК ANG и VEGF при прогрессирующем ангиогенезе венозной системы печени крыс Wistar в экспериментальном циррозе. Молекуляр. медицина. 20(2), 53‒61.
Дополнительные файлы
