Analysis of the relationship between Cxcl12, Tweak, Notch1 and Yap1 mRNA expression in the molecular mechanisms of liver fibrogenesis
- Авторлар: Lebedeva E.I.1, Shchastniy A.T.1, Babenka A.S.2, Zinovkin D.А.3
-
Мекемелер:
- Vitebsk State Order of Peoples’ Friendship Medical University
- Belarussian State Medical University
- Gomel State Medical University
- Шығарылым: Том 58, № 1 (2024)
- Беттер: 130-140
- Бөлім: МОЛЕКУЛЯРНАЯ БИОЛОГИЯ КЛЕТКИ
- URL: https://innoscience.ru/0026-8984/article/view/655348
- DOI: https://doi.org/10.31857/S0026898424010126
- EDN: https://elibrary.ru/NXGUNP
- ID: 655348
Дәйексөз келтіру
Аннотация
Currently, data on the molecular mechanisms of fibrosis and cirrhosis of the liver do not allow us to fully understand all the stages in the development of these pathological processes. It is known that individual genes and signaling pathways do not function independently. Relations between them play a huge role in the implementation of their functions. Due to the complexity of studying this factor, information about their relationship is insufficient and often contradictory. In the present work, for the first time at different stages of thioacetamide-induced fibrosis in the liver of Wistar rats, mRNA expression of Notch1, Notch2, Yap1, Tweak (Tnfsf12), Fn14 (Tnfrsf12a), Ang, Vegfa, Cxcl12 (Sdf), Nos2, and Mmp-9 genes was studied in detail. Using factor analysis, three factors were obtained that combined highly correlated target genes with each other. The first factor includes four genes: Cxcl12 (r = 0.829, p < 0.05), Tweak (r = 0.841, p < 0.05), Notch1 (r = 0.848, p < 0.05), Yap1 (r = 0.921, p < 0.05). The second factor describes the correlations between the Mmp-9 (r = 0.791, p < 0.05) and Notch2 (r = 0.836, p < 0.05) genes. The third factor included genes Ang (r = 0.748, p < 0.05) and Vegfa (r = 0.679, p < 0.05). The Nos2 and Fn14 genes were not included in any of the factors. The selected genes classified on the basis of mRNA expression levels suggest that their products have a pathogenetic relationship in the processes of fibrotic changes in the liver of toxic etiology. Undoubtedly, the results obtained are of fundamental interest and require further expansion in the study of fibrosis and cirrhosis of the liver.
Негізгі сөздер
Толық мәтін

Авторлар туралы
E. Lebedeva
Vitebsk State Order of Peoples’ Friendship Medical University
Email: lebedeva.ya-elenale2013@yandex.ru
Белоруссия, Vitebsk, 210009
A. Shchastniy
Vitebsk State Order of Peoples’ Friendship Medical University
Хат алмасуға жауапты Автор.
Email: lebedeva.ya-elenale2013@yandex.ru
Белоруссия, Vitebsk, 210009
A. Babenka
Belarussian State Medical University
Email: lebedeva.ya-elenale2013@yandex.ru
Белоруссия, Minsk, 220116
D. Zinovkin
Gomel State Medical University
Email: lebedeva.ya-elenale2013@yandex.ru
Белоруссия, Gomel, 246050
Әдебиет тізімі
- Zhang D., Zhang Y., Sun B. (2022) The molecular mechanisms of liver fibrosis and its potential therapy in application. Int. J. Mol. Sci. 23(20), 12572. doi: 10.3390/ijms232012572
- Graupera I., Isus L., Coll M., Pose E., Díaz A., Vallverdú J., Rubio-Tomás T., Martínez-Sánchez C., Huelin P., Llopis M., Solé C., Fondevila C., Lozano J.J., Sancho-Bru P., Ginès P., Aloy P. (2022) Molecular characterization of chronic liver disease dynamics: from liver fibrosis to acute-on-chronic liver failure. JHEP Rep. 4(6), 100482. doi: 10.1016/j.jhepr.2022.100482
- Kachanova O., Lobov A., Malashicheva A. (2022) The role of the Notch signaling pathway in recovery of cardiac function after myocardial infarction. Int. J. Mol. Sci. 23(20), 12509. doi: 10.3390/ijms232012509
- Yuan C., Ni L., Zhang C., Wu X. (2020) The role of Notch3 signaling in kidney disease. Oxid. Med. Cell Longev. 2020, 1809408. doi: 10.1155/2020/1809408
- Salazar J.L., Yang S.A., Yamamoto S. (2020) Post-developmental roles of notch signaling in the nervous system. Biomolecules. 10(7), 985. doi: 10.3390/biom10070985
- Hosseini-Alghaderi S., Baron M. (2020) Notch3 in development, health and disease. Biomolecules. 10(3), 485. doi: 10.3390/biom10030485
- Chen Y., Gao W.K., Shu Y.Y., Ye J. (2022) Mechanisms of ductular reaction in non-alcoholic steatohepatitis. World J. Gastroenterol. 28(19), 2088‒2099. doi: 10.3748/wjg.v28.i19.2088
- Vera L., Garcia-Olloqui P., Petri E., Viñado A.C., Valera P.S., Blasco-Iturri Z., Calvo I.A., Cenzano I., Ruppert C., Zulueta J.J., Prosper F., Saez B., Pardo-Saganta A. (2021) Notch3 deficiency attenuates pulmonary fibrosis and impedes lung-function decline. Am. J. Respir. Cell Mol. Biol. 64(4), 465‒476. doi: 10.1165/rcmb.2020-0516OC
- Adams J.M., Jafar-Nejad H. (2019) The roles of notch signaling in liver development and disease. Biomolecules. 9(10), 608. doi: 10.3390/biom9100608
- Pelullo M., Zema S., Nardozza F., Checquolo S., Screpanti I., Bellavia D. (2019) Wnt, Notch, and TGF-β pathways impinge on hedgehog signaling complexity: an open window on cancer. Front. Genet. 10, 711. doi: 10.3389/fgene.2019.00711
- Dai Y., Hao P., Sun Z., Guo Z., Xu H., Xue L., Song H., Li Y., Li S., Gao M., Si T., Zhang Y., Qi Y. (2021) Liver knockout YAP gene improved insulin resistance-induced hepatic fibrosis. J. Endocrinol. 249(2), 149‒161. doi: 10.1530/JOE-20-0561
- Yu H.X., Yao Y., Bu F.T., Chen Y., Wu Y.T., Yang Y., Chen X., Zhu Y., Wang Q., Pan X.Y., Meng X.M., Huang C., Li J. (2019) Blockade of YAP alleviates hepatic fibrosis through accelerating apoptosis and reversion of activated hepatic stellate cells. Mol. Immunol. 107, 29‒40. doi: 10.1016/j.molimm.2019.01.004
- Zheng C., Luo J., Yang Y., Dong R., Yu F.X., Zheng S. (2021) YAP activation and implications in patients and a mouse model of biliary atresia. Front. Pediatr. 8, 618226. doi: 10.3389/fped.2020.618226
- He X., Tolosa M.F., Zhang T., Goru S.K., Ulloa Severino L., Misra P.S., McEvoy C.M., Caldwell L., Szeto S.G., Gao F., Chen X., Atin C., Ki V., Vukosa N., Hu C., Zhang J., Yip C., Krizova A., Wrana J.L., Yuen D.A. (2022) Myofibroblast YAP/TAZ activation is a key step in organ fibrogenesis. JCI Insight. 7(4), e146243. doi: 10.1172/jci.insight.146243
- Wang M., Xie Z., Xu J., Feng Z. (2020) TWEAK/Fn14 axis in respiratory diseases. Clin. Chim. Acta. 509, 139‒148. doi: 10.1016/j.cca.2020.06.007
- Dwyer B.J., Jarman E.J., Gogoi-Tiwari J., Ferreira-Gonzalez S., Boulter L., Guest R.V., Kendall T.J., Kurian D., Kilpatrick A.M., Robson A.J., O’Duibhir E., Man T.Y., Campana L., Starkey Lewis P.J., Wigmore S.J., Olynyk J.K., Ramm G.A., Tirnitz-Parker J.E.E., Forbes S.J. (2021) TWEAK/Fn14 signalling promotes cholangiocarcinoma niche formation and progression. J. Hepatol. 74(4), 860‒872. doi: 10.1016/j.jhep.2020.11.018
- Zhang Y., Zeng W., Xia Y. (2021) TWEAK/Fn14 axis is an important player in fibrosis. J. Cell. Physiol. 236(5), 3304‒3316. doi: 10.1002/jcp.30089
- Lin Y., Dong M.Q., Liu Z.M., Xu M., Huang Z.H., Liu H.J., Gao Y., Zhou W. (2022) A strategy of vascular-targeted therapy for liver fibrosis. J. Hepatology. 76(3), 660‒675. doi: 10.1002/hep.32299
- Lefere S., Devisscher L., Geerts A. (2020) Angiogenesis in the progression of non-alcoholic fatty liver disease. Acta Gastroenterol. Belg. 83(2), 301‒307.
- Yang L., Yue W., Zhang H., Zhang Z., Xue R., Dong C., Liu F., Chang N., Yang L., Li L. (2022) Dual targeting of angipoietin-1 and von Willebrand factor by microRNA-671-5p attenuates liver angiogenesis and fibrosis. Hepatol. Commun. 6(6), 1425‒1442. doi: 10.1002/hep4.1888
- Friedman S.L., Pinzani M. (2022) Hepatic fibrosis 2022: unmet needs and a blueprint for the future. Hepatology. 75(2), 473‒488. doi: 10.1002/hep.32285
- Ray P., Stacer A.C., Fenner J., Cavnar S.P., Meguiar K., Brown M., Luker K.E., Luker G.D. (2015) CXCL12-γ in primary tumors drives breast cancer metastasis. Oncogene. 34(16), 2043‒2051. doi: 10.1038/onc.2014.157
- Cui L.N., Zheng X.H., Yu J.H., Han Y. (2021) Role of CXCL12-CXCR4/CXCR7 signal axis in liver regeneration and liver fibrosis. Zhonghua Gan Zang Bing Za Zhi. 29(9), 900‒903. doi: 10.3760/cma.j.cn501113-20200721-00403
- Chiraunyanann T., Changsri K., Sretapunya W., Yuenyongchaiwat K., Akekawatchai C. (2019) CXCL12 G801A polymorphism is associated with significant liver fibrosis in HIV-infected Thais: a cross-sectional study. Asian Pac. J. Allergy Immunol. 37(3), 162‒170. doi: 10.12932/AP-160917-0162
- Zhang J., Li Y., Liu Q., Li R., Pu S., Yang L., Feng Y., Ma L. (2018) SKLB023 as an iNOS inhibitor alleviated liver fibrosis by inhibiting the TGF-beta/Smad signaling pathway. RSC Adv. 8(54), 30919‒30924. doi: 10.1039/c8ra04955f
- Ahmad N., Ansari M.Y., Haqqi T.M. (2020) Role of iNOS in osteoarthritis: рathological and therapeutic aspects. J. Cell Physiol. 235(10), 6366‒6376. doi: 10.1002/jcp.29607
- Kashfi K., Kannikal J., Nath N. (2021) Macrophage reprogramming and cancer therapeutics: role of iNOS-derived NO. Cells. 10(11), 3194. doi: 10.3390/cells10113194
- Tsomidis I., Notas G., Xidakis C., Voumvouraki A., Samonakis D.N., Koulentaki M., Kouroumalis E. (2022) Enzymes of fibrosis in chronic liver disease. Biomedicines. 10(12), 3179. doi: 10.3390/biomedicines10123179
- Lachowski D., Cortes E., Rice A., Pinato D., Rombouts K., Hernandez A.D.R. (2019) Matrix stiffness modulates the activity of MMP-9 and TIMP-1 in hepatic stellate cells to perpetuate fibrosis. Sci. Rep. 9(1), 7299. doi: 10.1038/s41598-019-43759-6
- Maltais L.J., Blake J.A., Chu T., Lutz C.M., Eppig J.T., Jackson I. (2002) Rules and guidelines for mouse gene, allele, and mutation nomenclature: a condensed version. Genomics. 79(4), 471‒474. doi: 10.1006/geno.2002.6747
- Everhart J.E., Wright E.C., Goodman Z.D., Dienstag J.L., Hoefs J.C., Kleiner D.E., Ghany M.G., Mills A.S., Nash S.R., Govindarajan S., Rogers T.E., Greenson J.K., Brunt E.M., Bonkovsky H.L., Morishima C., Litman H.J. (2010) HALT-C Trial Group. Prognostic value of Ishak fibrosis stage: findings from the hepatitis C antiviral long-term treatment against cirrhosis trial. Hepatology. 51(2), 585‒594. doi: 10.1002/hep.23315
- Лебедева Е.И., Щастный А.Т., Бабенко А.С. (2022) Динамика стабильности экспрессии генов sdha, hprt, prl3d1 и hes1 в рамках моделирования фиброза печени крыс. Молекуляр. медицина. 20(2), 53–62. doi: 10.29296/24999490-2022-02-08
- Sharma N., Shaikh T.B., Eedara A., Kuncha M., Sistla R., Andugulapati S.B. (2022) Dehydrozingerone ameliorates thioacetamide-induced liver fibrosis via inhibition of hepatic stellate cells activation through modulation of the MAPK pathway. Eur. J. Pharmacol. 937, 175366. doi: 10.1016/j.ejphar.2022.175366
- Chandrashekar D.V., DuBois B.N., Rashid M., Mehvar R. (2023) Effects of chronic cirrhosis induced by intraperitoneal thioacetamide injection on the protein content and Michaelis-Menten kinetics of cytochrome P450 enzymes in the rat liver microsomes. Basic Clin. Pharmacol. Toxicol. 132(2), 197‒210. doi: 10.1111/bcpt.13813
- Shareef S.H., Al-Medhtiy M.H., Al Rashdi A.S., Aziz P.Y., Abdulla M.A. (2023) Hepatoprotective effect of pinostrobin against thioacetamide-induced liver cirrhosis in rats. Saudi J. Biol. Sci. 30(1), 103506. doi: 10.1016/j.sjbs.2022.103506
- Walther C.P., Benoit J.S. (2021) Tubular kidney biomarker insights through factor analysis. Am. J. Kidney Dis. 78(3), 335‒337. doi: 10.1053/j.ajkd.2021.03.016
- Muthiah M.D., Huang D.Q., Zhou L., Jumat N.H., Choolani M., Chan J.K.Y., Wee A., Lim S.G., Dan Y.Y. (2019) A murine model demonstrating reversal of structural and functional correlates of cirrhosis with progenitor cell transplantation. Sci. Rep. 9(1), 15446. doi: 10.1038/s41598-019-51189-7
- Ezhilarasan D. (2023) Molecular mechanisms in thioacetamide-induced acute and chronic liver injury models. Environ. Toxicol. Pharmacol. 104093. doi: 10.1016/j.etap.2023.104093
- Лебедева Е.И., Щастный А.Т., Бабенко А.С. (2022) Взаимное снижение уровня мРНК ANG и VEGF при прогрессирующем ангиогенезе венозной системы печени крыс Wistar в экспериментальном циррозе. Молекуляр. медицина. 20(2), 53‒61.
Қосымша файлдар
