Analysis of the relationship between Cxcl12, Tweak, Notch1 and Yap1 mRNA expression in the molecular mechanisms of liver fibrogenesis

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Currently, data on the molecular mechanisms of fibrosis and cirrhosis of the liver do not allow us to fully understand all the stages in the development of these pathological processes. It is known that individual genes and signaling pathways do not function independently. Relations between them play a huge role in the implementation of their functions. Due to the complexity of studying this factor, information about their relationship is insufficient and often contradictory. In the present work, for the first time at different stages of thioacetamide-induced fibrosis in the liver of Wistar rats, mRNA expression of Notch1, Notch2, Yap1, Tweak (Tnfsf12), Fn14 (Tnfrsf12a), Ang, Vegfa, Cxcl12 (Sdf), Nos2, and Mmp-9 genes was studied in detail. Using factor analysis, three factors were obtained that combined highly correlated target genes with each other. The first factor includes four genes: Cxcl12 (r = 0.829, p < 0.05), Tweak (r = 0.841, p < 0.05), Notch1 (r = 0.848, p < 0.05), Yap1 (r = 0.921, p < 0.05). The second factor describes the correlations between the Mmp-9 (r = 0.791, p < 0.05) and Notch2 (r = 0.836, p < 0.05) genes. The third factor included genes Ang (r = 0.748, p < 0.05) and Vegfa (r = 0.679, p < 0.05). The Nos2 and Fn14 genes were not included in any of the factors. The selected genes classified on the basis of mRNA expression levels suggest that their products have a pathogenetic relationship in the processes of fibrotic changes in the liver of toxic etiology. Undoubtedly, the results obtained are of fundamental interest and require further expansion in the study of fibrosis and cirrhosis of the liver.

Негізгі сөздер

Толық мәтін

Рұқсат жабық

Авторлар туралы

E. Lebedeva

Vitebsk State Order of Peoples’ Friendship Medical University

Email: lebedeva.ya-elenale2013@yandex.ru
Белоруссия, Vitebsk, 210009

A. Shchastniy

Vitebsk State Order of Peoples’ Friendship Medical University

Хат алмасуға жауапты Автор.
Email: lebedeva.ya-elenale2013@yandex.ru
Белоруссия, Vitebsk, 210009

A. Babenka

Belarussian State Medical University

Email: lebedeva.ya-elenale2013@yandex.ru
Белоруссия, Minsk, 220116

D. Zinovkin

Gomel State Medical University

Email: lebedeva.ya-elenale2013@yandex.ru
Белоруссия, Gomel, 246050

Әдебиет тізімі

  1. Zhang D., Zhang Y., Sun B. (2022) The molecular mechanisms of liver fibrosis and its potential therapy in application. Int. J. Mol. Sci. 23(20), 12572. doi: 10.3390/ijms232012572
  2. Graupera I., Isus L., Coll M., Pose E., Díaz A., Vallverdú J., Rubio-Tomás T., Martínez-Sánchez C., Huelin P., Llopis M., Solé C., Fondevila C., Lozano J.J., Sancho-Bru P., Ginès P., Aloy P. (2022) Molecular characterization of chronic liver disease dynamics: from liver fibrosis to acute-on-chronic liver failure. JHEP Rep. 4(6), 100482. doi: 10.1016/j.jhepr.2022.100482
  3. Kachanova O., Lobov A., Malashicheva A. (2022) The role of the Notch signaling pathway in recovery of cardiac function after myocardial infarction. Int. J. Mol. Sci. 23(20), 12509. doi: 10.3390/ijms232012509
  4. Yuan C., Ni L., Zhang C., Wu X. (2020) The role of Notch3 signaling in kidney disease. Oxid. Med. Cell Longev. 2020, 1809408. doi: 10.1155/2020/1809408
  5. Salazar J.L., Yang S.A., Yamamoto S. (2020) Post-developmental roles of notch signaling in the nervous system. Biomolecules. 10(7), 985. doi: 10.3390/biom10070985
  6. Hosseini-Alghaderi S., Baron M. (2020) Notch3 in development, health and disease. Biomolecules. 10(3), 485. doi: 10.3390/biom10030485
  7. Chen Y., Gao W.K., Shu Y.Y., Ye J. (2022) Mechanisms of ductular reaction in non-alcoholic steatohepatitis. World J. Gastroenterol. 28(19), 2088‒2099. doi: 10.3748/wjg.v28.i19.2088
  8. Vera L., Garcia-Olloqui P., Petri E., Viñado A.C., Valera P.S., Blasco-Iturri Z., Calvo I.A., Cenzano I., Ruppert C., Zulueta J.J., Prosper F., Saez B., Pardo-Saganta A. (2021) Notch3 deficiency attenuates pulmonary fibrosis and impedes lung-function decline. Am. J. Respir. Cell Mol. Biol. 64(4), 465‒476. doi: 10.1165/rcmb.2020-0516OC
  9. Adams J.M., Jafar-Nejad H. (2019) The roles of notch signaling in liver development and disease. Biomolecules. 9(10), 608. doi: 10.3390/biom9100608
  10. Pelullo M., Zema S., Nardozza F., Checquolo S., Screpanti I., Bellavia D. (2019) Wnt, Notch, and TGF-β pathways impinge on hedgehog signaling complexity: an open window on cancer. Front. Genet. 10, 711. doi: 10.3389/fgene.2019.00711
  11. Dai Y., Hao P., Sun Z., Guo Z., Xu H., Xue L., Song H., Li Y., Li S., Gao M., Si T., Zhang Y., Qi Y. (2021) Liver knockout YAP gene improved insulin resistance-induced hepatic fibrosis. J. Endocrinol. 249(2), 149‒161. doi: 10.1530/JOE-20-0561
  12. Yu H.X., Yao Y., Bu F.T., Chen Y., Wu Y.T., Yang Y., Chen X., Zhu Y., Wang Q., Pan X.Y., Meng X.M., Huang C., Li J. (2019) Blockade of YAP alleviates hepatic fibrosis through accelerating apoptosis and reversion of activated hepatic stellate cells. Mol. Immunol. 107, 29‒40. doi: 10.1016/j.molimm.2019.01.004
  13. Zheng C., Luo J., Yang Y., Dong R., Yu F.X., Zheng S. (2021) YAP activation and implications in patients and a mouse model of biliary atresia. Front. Pediatr. 8, 618226. doi: 10.3389/fped.2020.618226
  14. He X., Tolosa M.F., Zhang T., Goru S.K., Ulloa Severino L., Misra P.S., McEvoy C.M., Caldwell L., Szeto S.G., Gao F., Chen X., Atin C., Ki V., Vukosa N., Hu C., Zhang J., Yip C., Krizova A., Wrana J.L., Yuen D.A. (2022) Myofibroblast YAP/TAZ activation is a key step in organ fibrogenesis. JCI Insight. 7(4), e146243. doi: 10.1172/jci.insight.146243
  15. Wang M., Xie Z., Xu J., Feng Z. (2020) TWEAK/Fn14 axis in respiratory diseases. Clin. Chim. Acta. 509, 139‒148. doi: 10.1016/j.cca.2020.06.007
  16. Dwyer B.J., Jarman E.J., Gogoi-Tiwari J., Ferreira-Gonzalez S., Boulter L., Guest R.V., Kendall T.J., Kurian D., Kilpatrick A.M., Robson A.J., O’Duibhir E., Man T.Y., Campana L., Starkey Lewis P.J., Wigmore S.J., Olynyk J.K., Ramm G.A., Tirnitz-Parker J.E.E., Forbes S.J. (2021) TWEAK/Fn14 signalling promotes cholangiocarcinoma niche formation and progression. J. Hepatol. 74(4), 860‒872. doi: 10.1016/j.jhep.2020.11.018
  17. Zhang Y., Zeng W., Xia Y. (2021) TWEAK/Fn14 axis is an important player in fibrosis. J. Cell. Physiol. 236(5), 3304‒3316. doi: 10.1002/jcp.30089
  18. Lin Y., Dong M.Q., Liu Z.M., Xu M., Huang Z.H., Liu H.J., Gao Y., Zhou W. (2022) A strategy of vascular-targeted therapy for liver fibrosis. J. Hepatology. 76(3), 660‒675. doi: 10.1002/hep.32299
  19. Lefere S., Devisscher L., Geerts A. (2020) Angiogenesis in the progression of non-alcoholic fatty liver disease. Acta Gastroenterol. Belg. 83(2), 301‒307.
  20. Yang L., Yue W., Zhang H., Zhang Z., Xue R., Dong C., Liu F., Chang N., Yang L., Li L. (2022) Dual targeting of angipoietin-1 and von Willebrand factor by microRNA-671-5p attenuates liver angiogenesis and fibrosis. Hepatol. Commun. 6(6), 1425‒1442. doi: 10.1002/hep4.1888
  21. Friedman S.L., Pinzani M. (2022) Hepatic fibrosis 2022: unmet needs and a blueprint for the future. Hepatology. 75(2), 473‒488. doi: 10.1002/hep.32285
  22. Ray P., Stacer A.C., Fenner J., Cavnar S.P., Meguiar K., Brown M., Luker K.E., Luker G.D. (2015) CXCL12-γ in primary tumors drives breast cancer metastasis. Oncogene. 34(16), 2043‒2051. doi: 10.1038/onc.2014.157
  23. Cui L.N., Zheng X.H., Yu J.H., Han Y. (2021) Role of CXCL12-CXCR4/CXCR7 signal axis in liver regeneration and liver fibrosis. Zhonghua Gan Zang Bing Za Zhi. 29(9), 900‒903. doi: 10.3760/cma.j.cn501113-20200721-00403
  24. Chiraunyanann T., Changsri K., Sretapunya W., Yuenyongchaiwat K., Akekawatchai C. (2019) CXCL12 G801A polymorphism is associated with significant liver fibrosis in HIV-infected Thais: a cross-sectional study. Asian Pac. J. Allergy Immunol. 37(3), 162‒170. doi: 10.12932/AP-160917-0162
  25. Zhang J., Li Y., Liu Q., Li R., Pu S., Yang L., Feng Y., Ma L. (2018) SKLB023 as an iNOS inhibitor alleviated liver fibrosis by inhibiting the TGF-beta/Smad signaling pathway. RSC Adv. 8(54), 30919‒30924. doi: 10.1039/c8ra04955f
  26. Ahmad N., Ansari M.Y., Haqqi T.M. (2020) Role of iNOS in osteoarthritis: рathological and therapeutic aspects. J. Cell Physiol. 235(10), 6366‒6376. doi: 10.1002/jcp.29607
  27. Kashfi K., Kannikal J., Nath N. (2021) Macrophage reprogramming and cancer therapeutics: role of iNOS-derived NO. Cells. 10(11), 3194. doi: 10.3390/cells10113194
  28. Tsomidis I., Notas G., Xidakis C., Voumvouraki A., Samonakis D.N., Koulentaki M., Kouroumalis E. (2022) Enzymes of fibrosis in chronic liver disease. Biomedicines. 10(12), 3179. doi: 10.3390/biomedicines10123179
  29. Lachowski D., Cortes E., Rice A., Pinato D., Rombouts K., Hernandez A.D.R. (2019) Matrix stiffness modulates the activity of MMP-9 and TIMP-1 in hepatic stellate cells to perpetuate fibrosis. Sci. Rep. 9(1), 7299. doi: 10.1038/s41598-019-43759-6
  30. Maltais L.J., Blake J.A., Chu T., Lutz C.M., Eppig J.T., Jackson I. (2002) Rules and guidelines for mouse gene, allele, and mutation nomenclature: a condensed version. Genomics. 79(4), 471‒474. doi: 10.1006/geno.2002.6747
  31. Everhart J.E., Wright E.C., Goodman Z.D., Dienstag J.L., Hoefs J.C., Kleiner D.E., Ghany M.G., Mills A.S., Nash S.R., Govindarajan S., Rogers T.E., Greenson J.K., Brunt E.M., Bonkovsky H.L., Morishima C., Litman H.J. (2010) HALT-C Trial Group. Prognostic value of Ishak fibrosis stage: findings from the hepatitis C antiviral long-term treatment against cirrhosis trial. Hepatology. 51(2), 585‒594. doi: 10.1002/hep.23315
  32. Лебедева Е.И., Щастный А.Т., Бабенко А.С. (2022) Динамика стабильности экспрессии генов sdha, hprt, prl3d1 и hes1 в рамках моделирования фиброза печени крыс. Молекуляр. медицина. 20(2), 53–62. doi: 10.29296/24999490-2022-02-08
  33. Sharma N., Shaikh T.B., Eedara A., Kuncha M., Sistla R., Andugulapati S.B. (2022) Dehydrozingerone ameliorates thioacetamide-induced liver fibrosis via inhibition of hepatic stellate cells activation through modulation of the MAPK pathway. Eur. J. Pharmacol. 937, 175366. doi: 10.1016/j.ejphar.2022.175366
  34. Chandrashekar D.V., DuBois B.N., Rashid M., Mehvar R. (2023) Effects of chronic cirrhosis induced by intraperitoneal thioacetamide injection on the protein content and Michaelis-Menten kinetics of cytochrome P450 enzymes in the rat liver microsomes. Basic Clin. Pharmacol. Toxicol. 132(2), 197‒210. doi: 10.1111/bcpt.13813
  35. Shareef S.H., Al-Medhtiy M.H., Al Rashdi A.S., Aziz P.Y., Abdulla M.A. (2023) Hepatoprotective effect of pinostrobin against thioacetamide-induced liver cirrhosis in rats. Saudi J. Biol. Sci. 30(1), 103506. doi: 10.1016/j.sjbs.2022.103506
  36. Walther C.P., Benoit J.S. (2021) Tubular kidney biomarker insights through factor analysis. Am. J. Kidney Dis. 78(3), 335‒337. doi: 10.1053/j.ajkd.2021.03.016
  37. Muthiah M.D., Huang D.Q., Zhou L., Jumat N.H., Choolani M., Chan J.K.Y., Wee A., Lim S.G., Dan Y.Y. (2019) A murine model demonstrating reversal of structural and functional correlates of cirrhosis with progenitor cell transplantation. Sci. Rep. 9(1), 15446. doi: 10.1038/s41598-019-51189-7
  38. Ezhilarasan D. (2023) Molecular mechanisms in thioacetamide-induced acute and chronic liver injury models. Environ. Toxicol. Pharmacol. 104093. doi: 10.1016/j.etap.2023.104093
  39. Лебедева Е.И., Щастный А.Т., Бабенко А.С. (2022) Взаимное снижение уровня мРНК ANG и VEGF при прогрессирующем ангиогенезе венозной системы печени крыс Wistar в экспериментальном циррозе. Молекуляр. медицина. 20(2), 53‒61.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Liver fragments of rats from the control group (a) and rats with induced cirrhosis after 3 (b), 5 (c), 9 (d), 11 (e) and 17 weeks. (f) after the start of the experiment. Mallory staining. ×40 (a, b, d, f); ×20 (c, d). a – Central vein (arrow); b – fibrous connective tissue (arrows); c – fibrous septa between the portal zones (arrows); d – false hepatic lobule (highlighted by an oval frame); e – false hepatic lobules (arrows); e – severe liver destruction.

Жүктеу (1MB)
3. Fig. 2. Plot of extracted factors in 3D coordinates.

Жүктеу (163KB)
4. Fig. 3. Changes in the levels of mRNA expression of the genes of the first factor when modeling fibrosis and cirrhosis of the rat liver.

Жүктеу (213KB)
5. Fig. 4. Changes in the levels of mRNA expression of the second factor genes when modeling rat liver fibrosis and cirrhosis.

Жүктеу (158KB)
6. Fig. 5. Changes in the levels of mRNA expression of third factor genes when modeling rat liver fibrosis and cirrhosis.

Жүктеу (134KB)

© Russian Academy of Sciences, 2024