Аномальная активность сигнального пути mTOR в расстройствах аутистического спектра: возможности механизмобоснованной терапии
- Авторы: Трифонова Е.А.1, Котлярова А.А.2, Кочетов А.В.1,3
-
Учреждения:
- Институт цитологии и генетики Сибирского отделения Российской академии наук
- Институт клинической и экспериментальной лимфологии – филиал Института цитологии и генетики Сибирского отделения Российской академии наук
- Новосибирский государственный университет
- Выпуск: Том 57, № 2 (2023)
- Страницы: 243-253
- Раздел: СИСТЕМНАЯ ФАРМАКОЛОГИЯ И СОЗДАНИЕ НОВЫХ МЕДИЦИНСКИХ ТЕХНОЛОГИЙ
- URL: https://innoscience.ru/0026-8984/article/view/655438
- DOI: https://doi.org/10.31857/S0026898423020222
- EDN: https://elibrary.ru/EFQXLY
- ID: 655438
Цитировать
Аннотация
Расстройства аутистического спектра (РАС) ‒ это патология развития, характеризующаяся ранним возникновением проблем в коммуникации, обучении и поведении. Синдромная форма РАС обусловлена моногенными мутациями. В том случае, когда не удается найти генетических или других известных механизмов для объяснения причин расстройства, используют термин “идиопатический аутизм”. Значительная часть случаев как синдромного, так и идиопатического аутизма связана с дерегуляцией трансляции, зависящей от механистической мишени рапамицина ‒ mTOR. В этом обзоре мы представляем как биоинформатические, так и экспериментальные данные, которые связывают сигнальный путь mTOR с аутизмом, спровоцированным материнскими аутоантителами, и детскими аутоиммунными нейропсихиатрическими расстройствами, такими как хорея Сиденгама и детское аутоиммунное нейропсихиатрическое расстройство, ассоциированное со стрептококковой инфекцией (PANDAS). Также мы обсуждаем необходимость субтипирования РАС и возможности механизмобоснованной терапии ингибиторами сигнального пути mTOR.
Об авторах
Е. А. Трифонова
Институт цитологии и генетики Сибирского отделения Российской академии наук
Автор, ответственный за переписку.
Email: trifonova.k@rambler.ru
Россия, 630090, Новосибирск
А. А. Котлярова
Институт клинической и экспериментальной лимфологии – филиал Института цитологии и генетикиСибирского отделения Российской академии наук
Email: trifonova.k@rambler.ru
Россия, 630117, Новосибирск
А. В. Кочетов
Институт цитологии и генетики Сибирского отделения Российской академии наук; Новосибирский государственный университет
Email: trifonova.k@rambler.ru
Россия, 630090, Новосибирск; Россия, 630090, Новосибирск
Список литературы
- Yoo H. (2015) Genetics of autism spectrum disorder: current status and possible clinical applications. Exp. Neurobiol. 24, 257–272. https://doi.org/10.5607/en.2015.24.4.257
- Winden K.D., Ebrahimi-Fakhari D., Sahin M. (2018) Abnormal mTOR activation in autism. Annu. Rev. Neurosci. 41, 1–23. https://doi.org/10.1146/annurev-neuro-080317-061747
- Bockaert J., Marin P. (2015) mTOR in brain physiology and pathologies. Physiol. Rev. 95, 1157–1187. https://doi.org/10.1152/physrev.00038.2014
- Trifonova E.A, Klimenko A.I., Mustafin Z.S., Lashin S.A., Kochetov A.V. (2019) The mTOR signaling pathway activity and vitamin D availability control the expression of most autism predisposition genes. Int. J. Mol. Sci. 20, E6332. https://doi.org/10.3390/ijms20246332
- Zoghbi H.Y., Bear M.F. (2012) Synaptic dysfunction in neurodevelopmental disorders associated with autism and intellectual disabilities. Cold Spring Harb. Perspect. Biol. 4, a009886. https://doi.org/10.1101/cshperspect.a009886
- Onore C., Yang H., Van de Water J., Ashwood P. (2017) Dynamic Akt/mTOR signaling in children with autism spectrum disorder. Front. Pediatr. 5, 43. https://doi.org/10.3389/fped.2017.00043
- Tylee D.S., Hess J.L., Quinn T.P., Barve R., Huang H., Zhang-James Y., Chang J., Stamova B.S., Sharp F.R., Hertz-Picciotto I., Faraone S.V., Kong S.W., Glatt S.J. (2017) Blood transcriptomic comparison of individuals with and without autism spectrum disorder: a combined-samples mega-analysis. Am. J. Med. Genet. B. Neuropsychiatr. Genet. 174, 181–201. https://doi.org/10.1002/ajmg.b.32511
- Jiang H.-Y., Xu L.-L., Shao L., Xia R.M., Yu Z.H., Ling Z.X., Yang F., Deng M., Ruan B. (2016) Maternal infection during pregnancy and risk of autism spectrum disorders: a systematic review and meta-analysis. Brain Behav. Immun. 58, 165–172. https://doi.org/10.1016/j.bbi.2016.06.005
- Lee B.K., Magnusson C., Gardner R.M., Blomström Å., Newschaffer C.J., Burstyn I., Karlsson H., Dalman C. (2015) Maternal hospitalization with infection during pregnancy and risk of autism spectrum disorders. Brain Behav. Immun. 44, 100–105. https://doi.org/10.1016/j.bbi.2014.09.001
- Lombardo M.V., Moon H.M., Su J., Palmer T.D., Courchesne E., Pramparo T. (2018) Maternal immune activation dysregulation of the fetal brain transcriptome and relevance to the pathophysiology of autism spectrum disorder. Mol. Psychiatry. 23, 1001–1013. https://doi.org/10.1038/mp.2017.15
- Ehninger D., Sano Y., de Vries P.J., Dies K., Franz D., Geschwind D.H., Kaur M., Lee Y.S., Li W., Lowe J.K., Nakagawa J.A., Sahin M., Smith K., Whittemore V., Silva A.J. (2012) Gestational immune activation and Tsc2 haploinsufficiency cooperate to disrupt fetal survival and may perturb social behavior in adult mice. Mol. Psychiatry. 17, 62–70. https://doi.org/10.1038/mp.2010.115
- Ramirez-Celis A., Becker M., Nuño M., Schauer J., Aghaeepour N., Van de Water J. (2021) Risk assessment analysis for maternal autoantibody-related autism (MAR-ASD): a subtype of autism. Mol. Psychiatry. 26, 1551–1560. https://doi.org/10.1038/s41380-020-00998-8
- Trifonova E.A., Mustafin Z.S., Lashin S.A., Kochetov A.V. (2022) Abnormal mTOR activity in pediatric autoimmune neuropsychiatric and MIA-associated autism spectrum disorders. Int. J. Mol. Sci. 23, 967. https://doi.org/10.3390/ijms23020967
- Meltzer A., Van de Water J. (2017) The role of the immune system in autism spectrum disorder. Neuropsychopharmacology. 42, 284–298. https://doi.org/10.1038/npp.2016.158
- Williams K.A., Swedo S.E. (2015) Post-infectious autoimmune disorders: Sydenham’s chorea, PANDAS and beyond. Brain Res. 1617, 144–154. https://doi.org/10.1016/j.brainres.2014.09.071
- True G. (2019) November Clinical Conversation: understanding PANS and PANDAS. In: Aspire. https://aspire.care/news/november-clinical-conversation-understanding-pans-and-pandas/
- Swedo S.E., Leonard H.L., Mittleman B.B., Allen A.J., Rapoport J.L., Dow S.P., Kanter M.E., Chapman F., Zabriskie J. (1997) Identification of children with pediatric autoimmune neuropsychiatric disorders associated with streptococcal infections by a marker associated with rheumatic fever. Am. J. Psychiatry. 154, 110–112. https://doi.org/10.1176/ajp.154.1.110
- Shimasaki C., Frye R.E., Trifiletti R., Cooperstock M., Kaplan G., Melamed I., Greenberg R., Katz A., Fier E., Kem D., Traver D., Dempsey T., Latimer M.E., Cross A., Dunn J.P., Bentley R., Alvarez K., Reim S., Appleman J. (2020) Evaluation of the Cunningham PanelTM in pediatric autoimmune neuropsychiatric disorder associated with streptococcal infection (PANDAS) and pediatric acute-onset neuropsychiatric syndrome (PANS): changes in antineuronal antibody titers parallel changes in patient symptoms. J. Neuroimmunol. 339, 577138. https://doi.org/10.1016/j.jneuroim.2019.577138
- Cunningham M.W. (2012) Streptococcus and rheumatic fever. Curr. Opin. Rheumatol. 24, 408–416. https://doi.org/10.1097/BOR.0b013e32835461d3
- Cunningham M.W. (2014) Rheumatic fever, autoimmunity, and molecular mimicry: the streptococcal connection. Int. Rev. Immunol. 33, 314–329. https://doi.org/10.3109/08830185.2014.917411
- Gulati P., Gaspers L.D., Dann S.G., Joaquin M., Nobukuni T., Natt F., Kozma S.C., Thomas A.P., Thomas G. (2008) Amino acids activate mTOR complex 1 via Ca2+/CaM signaling to hVps34. Cell Metab. 7, 456–465. https://doi.org/10.1016/j.cmet.2008.03.002
- Jing Z., Sui X., Yao J., Xie J., Jiang L., Zhou Y., Pan H., Han W. (2016) SKF-96365 activates cytoprotective autophagy to delay apoptosis in colorectal cancer cells through inhibition of the calcium/CaMKIIγ/AKT-mediated pathway. Cancer Lett. 372, 226–238. https://doi.org/10.1016/j.canlet.2016.01.006
- Fan X., Zhou J., Yan X., Bi X., Liang J., Lu S., Luo L., Zhou D., Yin Z. (2021) Citrate activates autophagic death of prostate cancer cells via downregulation CaMKII/AKT/mTOR pathway. Life Sci. 275, 119355. https://doi.org/10.1016/j.lfs.2021.119355
- Cheng Y.-L., Kuo C.-F., Lu S.-L., Omori H., Wu Y.N., Hsieh C.L., Noda T., Wu S.R., Anderson R., Lin C.F., Chen C.L., Wu J.J., Lin Y.S. (2019) Group A Streptococcus induces LAPosomes via SLO/β1 integrin/NOX2/ROS pathway in endothelial cells that are ineffective in bacterial killing and suppress xenophagy. mBio. 10, e02148-19. https://doi.org/10.1128/mBio.02148-19
- Wang J., Meng M., Li M., Guan X., Liu J., Gao X., Sun Q., Li J., Ma C., Wei L. (2020) Integrin α5β1, as a receptor of fibronectin, binds the FbaA protein of group A Streptococcus to initiate autophagy during infection. mBio. 11, e00771-20. https://doi.org/10.1128/mBio.00771-20
- Toh H., Nozawa T., Minowa-Nozawa A., Hikichi M., Nakajima S., Aikawa C., Nakagawa I. (2020) Group A Streptococcus modulates RAB1- and PIK3C3 complex-dependent autophagy. Autophagy. 16, 334–346. https://doi.org/10.1080/15548627.2019.1628539
- Shuid A.N., Jayusman P.A., Shuid N., Ismail J., Nor N.K., Mohamed I.N. (2020) Update on atypicalities of central nervous system in autism spectrum disorder. Brain Sci. 10, E309. https://doi.org/10.3390/brainsci10050309
- Salter M.W., Stevens B. (2017) Microglia emerge as central players in brain disease. Nat. Med. 23, 1018–1027. https://doi.org/10.1038/nm.4397
- Colonna M., Butovsky O. (2017) Microglia function in the central nervous system during health and neurodegeneration. Annu. Rev. Immunol. 35, 441–468. https://doi.org/10.1146/annurev-immunol-051116-052358
- Block M.L., Zecca L., Hong J.-S. (2007) Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat. Rev. Neurosci. 8, 57–69. https://doi.org/10.1038/nrn2038
- Dong H., Zhang X., Qian Y. (2014) Mast cells and neuroinflammation. Med. Sci. Monit. Basic Res. 20, 200–206. https://doi.org/10.12659/MSMBR.893093
- Pardo C.A., Vargas D.L., Zimmerman A.W. (2005) Immunity, neuroglia and neuroinflammation in autism. Int. Rev. Psychiatry. 17, 485–495. https://doi.org/10.1080/02646830500381930
- Жмуров В.А., Кручинин Е.В., Жмуров Д.В., Лебедев И.А., Пышнов А.С., Ахметьянов М.А., Кузнецов В.В., Козлов М.В., Мокин Е.А., Алекберов Р.И., Тяпкин А.В., Сметанин Е.И., Сейпилов А.А., Тарасов М.Ю. (2020) Молекулярные механизмы развития синаптического прунинга. Уральский медицинский журнал. 1(184), 58‒63. https://doi.org/10.25694/URMJ.2020.01.11.
- Sakai J. (2020) How synaptic pruning shapes neural wiring during development and, possibly, in disease. Proc. Natl. Acad. Sci. USA. 117, 16096–16099. https://doi.org/10.1073/pnas.2010281117
- Eltokhi A., Janmaat I.E., Genedi M., Haarman B.C.M., Sommer I.E.C. (2020) Dysregulation of synaptic pruning as a possible link between intestinal microbiota dysbiosis and neuropsychiatric disorders. J. Neurosci. Res. 98, 1335–1369. https://doi.org/10.1002/jnr.24616
- Liu Y., Zhang D., Liu X. (2015) mTOR signaling in T cell immunity and autoimmunity. Int. Rev. Immunol. 34, 50–66. https://doi.org/10.3109/08830185.2014.933957
- Delgoffe G.M., Pollizzi K.N., Waickman A.T., Heikamp E., Meyers D.J., Horton M.R., Xiao B., Worley P.F., Powell J.D. (2011) The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2. Nat. Immunol. 12, 295–303. https://doi.org/10.1038/ni.2005
- Ortiz-González X.R. (2021) Mitochondrial dysfunction: a common denominator in neurodevelopmental disorders? Dev. Neurosci. 43, 222–229. https://doi.org/10.1159/000517870
- Lenzi P., Ferese R., Biagioni F., Fulceri F., Busceti C.L., Falleni A., Gambardella S., Frati A., Fornai F. (2021) Rapamycin ameliorates defects in mitochondrial fission and mitophagy in glioblastoma cells. Int. J. Mol. Sci. 22, 5379. https://doi.org/10.3390/ijms22105379
- Thellung S., Corsaro A., Nizzari M., Barbieri F., Florio T. (2019) Autophagy activator drugs: a new opportunity in neuroprotection from misfolded protein toxicity. Int. J. Mol. Sci. 20, E901. https://doi.org/10.3390/ijms20040901
- Ehninger D., Han S., Shilyansky C., Zhou Y., Li W., Kwiatkowski D.J., Ramesh V., Silva A.J. (2008) Reversal of learning deficits in a Tsc2+/‒ mouse model of tuberous sclerosis. Nat. Med. 14, 843–848. https://doi.org/10.1038/nm1788
- Mizuguchi M., Ikeda H., Kagitani-Shimono K., Yoshinaga H., Suzuki Y., Aoki M., Endo M., Yonemura M., Kubota M. (2019) Everolimus for epilepsy and autism spectrum disorder in tuberous sclerosis complex: EXIST-3 substudy in Japan. Brain Dev. 41, 1–10. https://doi.org/10.1016/j.braindev.2018.07.003
- Overwater I.E., Rietman A.B., Mous S.E., Bindels-de Heus K., Rizopoulos D., Ten Hoopen L.W., van der Vaart T., Jansen F.E., Elgersma Y., Moll H.A., de Wit M.Y. (2019) A randomized controlled trial with everolimus for IQ and autism in tuberous sclerosis complex. Neurology. 93, e200–e209. https://doi.org/10.1212/WNL.0000000000007749
- Hu L.-Y., Shi X.-Y., Yang X.-F., Liu M.J., Zou L.P. (2021) Rapamycin/Sirolimus improves the behavior of an 8-year-old boy with nonsyndromic autism spectrum disorder. Am. J. Ther. 28, e608. https://doi.org/10.1097/MJT.0000000000001131
- Hwang S.-K., Lee J.-H., Yang J.-E., Lim C.S., Lee J.A., Lee Y.S., Lee K., Kaang B.K. (2016) Everolimus improves neuropsychiatric symptoms in a patient with tuberous sclerosis carrying a novel TSC2 mutation. Mol. Brain. 9, 56. https://doi.org/10.1186/s13041-016-0222-6
- Dean S.L., Singer H.S. (2017) Treatment of Sydenham’s chorea: a review of the current evidence. Tremor Other Hyperkinet. Mov. (N.Y.). 7, 456. https://doi.org/10.7916/D8W95GJ2
- Han W., Yu F., Cao J., Dong B., Guan W., Shi J. (2020) Valproic acid enhanced apoptosis by promoting autophagy via Akt/mTOR signaling in glioma. Cell Transplant. 29, 963689720981878. https://doi.org/10.1177/0963689720981878
- Weichhart T., Haidinger M., Katholnig K., Kopecky C., Poglitsch M., Lassnig C., Rosner M., Zlabinger G.J., Hengstschläger M., Müller M., Hörl W.H., Säemann M.D. (2011) Inhibition of mTOR blocks the anti-inflammatory effects of glucocorticoids in myeloid immune cells. Blood. 117, 4273–4283. https://doi.org/10.1182/blood-2010-09-310888
- Fu L., Wu W., Sun X., Zhang P. (2020) Glucocorticoids enhanced osteoclast autophagy through the PI3K/Akt/mTOR signaling pathway. Calcif. Tissue Int. 107, 60–71. https://doi.org/10.1007/s00223-020-00687-2
- Ramírez-Jarquín U.N., Shahani N., Pryor W., Usiello A., Subramaniam S. (2020) The mammalian target of rapamycin (mTOR) kinase mediates haloperidol-induced cataleptic behavior. Transl. Psychiatry. 10, 336. https://doi.org/10.1038/s41398-020-01014-x
- Das M., Karnam A., Stephen-Victor E., Gilardin L., Bhatt B., Kumar Sharma V., Rambabu N., Patil V., Lecerf M., Käsermann F., Bruneval P., Narayanaswamy Balaji K., Benveniste O., Kaveri S.V., Bayry J. (2020) Intravenous immunoglobulin mediates anti-inflammatory effects in peripheral blood mononuclear cells by inducing autophagy. Cell Death Dis. 11, 50. https://doi.org/10.1038/s41419-020-2249-y
- Menendez J.A., Joven J., Aragonès G., Barrajón-Catalán E., Beltrán-Debón R., Borrás-Linares I., Camps J., Corominas-Faja B., Cufí S., Fernández-Arroyo S, Garcia-Heredia A., Hernández-Aguilera A., Herranz-López M., Jiménez-Sánchez C., López-Bonet E., Lozano-Sánchez J., Luciano-Mateo F., Martin-Castillo B., Martin-Paredero V., Pérez-Sánchez A., Oliveras-Ferraros C., Riera-Borrull M., Rodríguez-Gallego E., Quirantes-Piné R., Rull A., Tomás-Menor L., Vazquez-Martin A., Alonso-Villaverde C., Micol V., Segura-Carretero A. (2013) Xenohormetic and anti-aging activity of secoiridoid polyphenols present in extra virgin olive oil. Cell Cycle. 12, 555–578. https://doi.org/10.4161/cc.23756
- Chen Z., Zhang Y., Jia C., Wang Y., Lai P., Zhou X., Wang Y., Song Q., Lin J., Ren Z., Gao Q., Zhao Z., Zheng H., Wan Z., Gao T., Zhao A., Dai Y., Bai X. (2014) mTORC1/2 targeted by n-3 polyunsaturated fatty acids in the prevention of mammary tumorigenesis and tumor progression. Oncogene. 33, 4548–4557. https://doi.org/10.1038/onc.2013.402
- Liu J., Xu M., Zhao Y., Ao C., Wu Y., Chen Z., Wang B., Bai X., Li M., Hu W. (2016) n-3 polyunsaturated fatty acids abrogate mTORC1/2 signaling and inhibit adrenocortical carcinoma growth in vitro and in vivo. Oncol. Rep. 35, 3514–3522. https://doi.org/10.3892/or.2016.4720
- di Michele F., Siracusano A., Talamo A., Niolu C. (2018) N-acetyl cysteine and vitamin D supplementation in treatment resistant obsessive-compulsive disorder patients: a general review. Curr. Pharm. Des. 24, 1832–1838. https://doi.org/10.2174/1381612824666180417124919
- Nikoo M., Radnia H., Farokhnia M., Mohammadi M.R., Akhondzadeh S. (2015) N-acetylcysteine as an adjunctive therapy to risperidone for treatment of irritability in autism: a randomized, double-blind, placebo-controlled clinical trial of efficacy and safety. Clin. Neuropharmacol. 38, 11–17. https://doi.org/10.1097/WNF.0000000000000063
- Lai Z.-W., Hanczko R., Bonilla E., Caza T.N., Clair B., Bartos A., Miklossy G., Jimah J., Doherty E., Tily H., Francis L., Garcia R., Dawood M., Yu J., Ramos I., Coman I., Faraone S.V., Phillips P.E., Perl A. (2012) N-acetylcysteine reduces disease activity by blocking mammalian target of rapamycin in T cells from systemic lupus erythematosus patients: a randomized, double-blind, placebo-controlled trial. Arthritis Rheum. 64, 2937–2946. https://doi.org/10.1002/art.34502
Дополнительные файлы
