Прогностический потенциал hsa-miR-16-5p, hsa-miR-125b-5p И hsa-miR-181a-5p для формирования группы повышенного риска развития рака молочной железы в условиях радиационного воздействия

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Рак молочной железы (РМЖ) – мультифакторное заболевание, которое характеризуется различными генетическими и эпигенетическими изменениями, возникающими, в том числе, под действием внешнесредовых этиологических факторов. Получены убедительные данные, свидетельствующие об участии эпигенетической дерегуляции в патогенезе РМЖ. В число потенциальных предикторов риска РМЖ могут входить различные микроРНК (миРНК), регулирующие широкий спектр биологических процессов в клетке. Понимание функциональной роли этих молекул даст ценную информацию о сложных молекулярных механизмах, лежащих в основе возникновения и прогрессирования РМЖ. В представленном обзоре с использованием опубликованных данных и биоинформатического анализа суммированы представления об аберрантной экспрессии miR-125b, miR-181a и miR-16 при РМЖ, рассмотрена их роль в патогенезе РМЖ, выполнена аннотация целевых генов-мишеней, оценен репрессионный потенциал миРНК и их диагностическая значимость при РМЖ. Рассмотрена экспрессия этих миРНК в различных типах клеток человека, подвергнутых радиационному воздействию. Интерес к конкретным миРНК обусловлен результатами многолетнего мониторинга здоровья людей, проживавших на радиоактивно-загрязненных территориях Южного Урала, а также данными о профилях экспрессии miR-125b, miR-181a и miR-16 в отдаленный период у облученных людей.

Полный текст

Доступ закрыт

Об авторах

М. А. Янишевская

Уральский научно-практический центр радиационной медицины Федерального медико-биологического агентства России

Автор, ответственный за переписку.
Email: yanishevskaya@urcrm.ru
Россия, Челябинск

Е. А. Блинова

Уральский научно-практический центр радиационной медицины Федерального медико-биологического агентства России; Челябинский государственный университет

Email: yanishevskaya@urcrm.ru
Россия, Челябинск; Челябинск

А. В. Аклеев

Уральский научно-практический центр радиационной медицины Федерального медико-биологического агентства России; Челябинский государственный университет

Email: yanishevskaya@urcrm.ru
Россия, Челябинск; Челябинск

Список литературы

  1. Sung H., Ferlay J., Siegel R.L., Laversanne M., Soerjomataram I., Jemal A., Bray F. (2021) Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71, 209–249.
  2. Гимаева Р.Р., Куприянова Е.А., Габелко Д.И. (2020) Мутации в генах BRCA1 и BRCA2 как этиологический фактор наследственного рака молочной железы. Вестн. современной клин. мед. 13(4), 39–43.
  3. Lima S.M., Kehm R.D., Terry M.B. (2021) Global breast cancer incidence and mortality trends by region, age-groups, and fertility patterns. EClinicalMedicine. 38, 100985.
  4. Sotiriou C., Pusztai L. (2009) Gene-expression signatures in breast cancer. N. Engl. J. Med. 360(8), 790–800.
  5. Brinton L.A., Gaudet M.M., Gierach G.L. (2017) Breast cancer. In: Cancer epidemiology and prevention. Oxford Scholarship Online, 2017.
  6. Chlebowski R.T., Manson J.E., Anderson G.L., Cauley J.A., Aragaki A.K., Stefanick M.L., Lane D.S., Johnson K.C., Wactawski-Wende J., Chen C., Qi L., Yasmeen S., Newcomb P.A., Prentice R.L. (2013) Estrogen plus progestin and breast cancer incidence and mortality in the Women’s Health Initiative Observational Study. J. Natl. Cancer Inst. 105(8), 526–535.
  7. McCormack V.A., I. dos Santos Silva (2006) Breast density and parenchymal patterns as markers of breast cancer risk: a meta-analysis. Cancer Epidemiol. Biomarkers Prev. 15(6), 1159–1169.
  8. Pessoa-Pereira D., Evangelista A.F., Causin R.L., da Costa Vieira R.A., Abrahao-Machado L.F., Santana I.V.V., da Silva V. D., de Souza K.C.B., de Oliveira-Silva R.J., Fernandes G.C., Reis R.M., Palmero E.I., Marques M.M.C. (2020) miRNA expression profiling of hereditary breast tumors from BRCA1- and BRCA2-germline mutation carriers in Brazil. BMC Cancer. 20(1), 143.
  9. Снигирева Г.П., Румянцева В.А., Новикова Е.И., Новицкая Н.Н., Телышева Е.Н., Хазинс Е.Д., Шайхаев Е.Г. (2019) Алгоритм молекулярно-генетического обследования для выявления наследственного BRCA-ассоциированного рака молочной железы. Альманах клин. мед. 47(1), 54–65.
  10. Dorling L., Carvalho S., Allen J., González-Neira A., Luccarini C., Wahlström C., Pooley K.A., Parsons M.T., Fortuno C., Wang Q., Bolla M.K., Dennis J., Keeman R., Alonso M.R., Álvarez N., Herraez B., Fernandez V., Núñez-Torres R., Osorio A., Easton, D.F. (2021) Breast cancer risk genes – association analysis in more than 113.000 women. N. Engl. J. Med. 384(5), 428–439.
  11. Shiovitz S., Korde L.A. (2015) Genetics of breast cancer: a topic in evolution. Ann. Oncol. 26(7), 1291–1299. 12.
  12. Ahearn T.U., Zhang H., Michailidou K., Milne R.L., Bolla M.K., Dennis J., Dunning A.M., Lush M., Wang Q., Andrulis I.L., Anton-Culver H., Arndt V., Aronson K.J., Auer P.L., Augustinsson A., Baten A., Becher H., Behrens S., Benitez J., Bermisheva M., Blomqvist C., Bojesen S.E., Bonanni B., Børresen-Dale A.L., Brauch H., Brenner H., Brooks-Wilson A., Brüning T., Burwinkel B., Buys S.S., Canzian F., Castelao J.E., Chang-Claude J., Chanock S.J., Chenevix-Trench G., Clarke C.L., NBCS Collaborators, Collée J.M., Cox A., Cross S.S., Czene K., Daly M.B., Devilee P., Dörk T., Dwek M., Eccles D.M., Evans D.G., Fasching P.A., Figueroa J., Floris G., Gago-Dominguez M., Gapstur S.M., García-Sáenz J.A., Gaudet M.M., Giles G.G., Goldberg M.S., González-Neira A., Alnæs G.I.G., Grip M., Guénel P., Haiman C.A., Hall P., Hamann U., Harkness E.F., Heemskerk-Gerritsen B.A.M., Holleczek B., Hollestelle A., Hooning M.J., Hoover R.N., Hopper J.L., Howell A., ABCTB Investigators; kConFab/AOCS Investigators; Jakimovska M., Jakubowska A., John E.M., Jones M.E., Jung A., Kaaks R., Kauppila S., Keeman R., Khusnutdinova E., Kitahara C.M., Ko Y.D., Koutros S., Kristensen V.N., Krüger U., Kubelka-Sabit K., Kurian A.W., Kyriacou K., Lambrechts D., Lee D.G., Lindblom A., Linet M., Lissowska J., Llaneza A., Lo W.Y., MacInnis R.J., Mannermaa A., Manoochehri M., Margolin S., Martinez M.E., McLean C., Meindl A., Menon U., Nevanlinna H., Newman W.G., Nodora J., Offit K., Olsson H., Orr N., Park-Simon T.W., Patel A.V., Peto J., Pita G., Plaseska-Karanfilska D., Prentice R., Punie K., Pylkäs K., Radice P., Rennert G., Romero A., Rüdiger T., Saloustros E., Sampson S., Sandler D.P., Sawyer E.J., Schmutzler R.K., Schoemaker M.J., Schöttker B., Sherman M.E., Shu X.O., Smichkoska S., Southey M.C., Spinelli J.J., Swerdlow A.J., Tamimi R.M., Tapper W.J., Taylor J.A., Teras L.R., Terry M.B., Torres D., Troester M.A., Vachon C.M., van Deurzen C.H.M, van Veen E.M., Wagner P., Weinberg C.R., Wendt C., Wesseling J., Winqvist R., Wolk A., Yang X.R., Zheng W., Couch F.J., Simard J., Kraft P., Easton D.F., Pharoah P.D.P, Schmidt M.K., García-Closas M., Chatterjee N. (2022) Common variants in breast cancer risk loci predispose to distinct tumor subtypes. Breast Cancer Res. 24(1), 2.
  13. OʹConnor M.J. (2015) Targeting the DNA damage response in cancer. Mol. Cell. 60, 547–560.
  14. Gahlawat A.W., Fahed L., Witte T., Schott S. (2022) Total circulating microRNA level as an independent prognostic marker for risk stratification in breast cancer. Br. J. Cancer. 127, 156–162.
  15. Weber J.A., Baxter D.H., Zhang S., Huang D.Y., Huang K.H., Lee M.J., Galas D.J., Wang K. (2010) The microRNA spectrum in 12 body fluids. Clin. Chem. 56, 1733–1741.
  16. Tiberio P., Callari M., Angeloni V., Daidone M.G., Appierto V. (2015) Challenges in using circulating miRNAs as cancer biomarkers. BioMed. Res. Int. 2015, 731479.
  17. Marino A.L., Evangelista A.F., Vieira R.A., Macedo T., Kerr L.M., Abrahão-Machado, L.F., Longatto-Filho A., Silveira H.C., Marques M.M. (2014) MicroRNA expression as risk biomarker of breast cancer metastasis: a pilot retrospective case-cohort study. BMC Cancer. 14, 739.
  18. Jacob N.K., Cooley J.V., Yee T.N., Jacob J., Alder H., Wickramasinghe P., Maclean K.H., Chakravarti A. (2013) Identification of sensitive serum microRNA biomarkers for radiation biodosimetry. PLoS One. 8(2), e57603.
  19. Chaudhry M.A., Omaruddin R.A., Kreger B., de Toledo S.M., Azzam E.I. (2012) MicroRNA responses to chronic or acute exposures to low dose ionizing radiation. Mol. Biol. Repts. 39(7), 7549–7558.
  20. Bae S., Kim K., Cha H.J., Choi Y., Shin S.H., An I.S., Lee J.H., Lee S.J., Kim J.Y., Nam S.Y., An S. (2015) Low-dose γ-irradiation induces dual radio-adaptive responses depending on the post-irradiation time by altering microRNA expression profiles in normal human dermal fibroblasts. Int. J. Mol. Med. 35(1), 227–237.
  21. Zhou S., Jin J., Wang J., Zhang Z., Freedman J.H., Zheng Y., Cai L. (2018) MiRNAs in cardiovascular diseases: potential biomarkers, therapeutic targets and challenges. Acta Pharmacol. Sin. 39, 1073–1084.
  22. Sharma S., Lu H.C. (2018) MicroRNAs in neurodegeneration: current findings and potential impacts. J. Alzheimer’s Dis. Parkinsonism. 8, 420.
  23. Long H., Wang X., Chen Y., Wang L., Zhao M., Lu Q. (2018) Dysregulation of microRNAs in autoimmune diseases: pathogenesis, biomarkers and potential therapeutic targets. Cancer Lett. 428, 90–103.
  24. Kim E.S., Choi Y.E., Hwang S.J., Han Y.H., Park M.J., Bae I.H. (2016) IL-4, a direct target of miR-340/429, is involved in radiation-induced aggressive tumor behavior in human carcinoma cells. Oncotarget. 7(52), 86836–86856.
  25. Cui J., Cheng Y., Zhang P., Sun M., Gao F., Liu C., Cai J. (2014) Down regulation of miR200c promotes radiation-induced thymic lymphoma by targeting BMI1. J. Cell. Biochem. 115(6), 1033–1042.
  26. Iizuka D., Imaoka T., Nishimura M., Kawai H., Suzuki F., Shimada Y. (2013) Aberrant microRNA expression in radiation-induced rat mammary cancer: the potential role of miR-194 overexpression in cancer cell proliferation. Radiation Res. 179(2), 151–159.
  27. Montani F., Bianchi F. (2016) Circulating cancer biomarkers: the macro-revolution of the micro-RNA. EbioMedicine. 5, 4–6.
  28. Mitchell P.S., Parkin R.K., Kroh E.M. (2008) Circulating microRNAs as stable blood-based markers for cancer detection. Proc. Natl. Acad. Sci. USA. 105(30), 10513–10518.
  29. Reid G., Kirschner M.B., van Zandwijk N. (2011) Circulating microRNAs: association with disease and potential use as biomarkers. Crit. Rev. Oncol. Hematol. 80(2), 193–208.
  30. Ronckers C.M., Erdmann C.A., Land C.E. (2004) Radiation and breast cancer: a review of current evidence. Breast Cancer Res. 7, 21–32.
  31. Calin G.A., Croce C.M. (2006) MicroRNA signatures in human cancers. Nature. 6(11), 857–866.
  32. Gaur A., Jewell D.A., Liang Y., Ridzon D., Moore J.H., Chen C., Ambros V.R., Israel M.A. (2007) Characterization of microRNA expression levels and their biological correlates in human cancer cell lines. Cancer Res. 67(6), 2456–2468.
  33. Giovannetti E., Erozenci A., Smit J., Danesi R., Peters G.J. (2012) Molecular mechanisms underlying the role of microRNAs (miRNAs) in anticancer drug resistance and implications for clinical practice. Crit. Rev. Oncol. Hematol. 81(2), 103–122.
  34. Tan W., Liu B., Qu S., Liang G., Luo W., Gong C. (2018) MicroRNAs and cancer: key paradigms in molecular therapy (Review). Oncol. Lett. 15, 2735–2742.
  35. Крестинина Л.Ю., Силкин С.С., Микрюкова Л.Д., Епифанова С.Б., Аклеев А.В. (2020) Риск заболеваемости солидными злокачественными новообразованиями в Уральской когорте аварийно-облученного населения: 1956–2017. Радиационная гигиена. 13(3), 6–17.
  36. Крестинина Л.Ю., Микрюкова Л.Д., Шалагинов С.А., Силкин С.С., Епифанова С.Б., Аклеев А.В. (2021) Риск заболеваемости раком молочной железы у аварийно-облученных лиц Южного Урала. Радиационная гигиена. 14(3), 79.
  37. Янишевская М.А., Блинова Е.А., Аклеев А.В. (2023) Влияние хронического радиационного воздействия на экспрессию миРНК человека. Генетика. 59(10), 1171–1178.
  38. van Schooneveld E., Wildiers H., Vergote I., Vermeulen P.B., Dirix L.Y., Van Laere S.J. (2015) Dysregulation of microRNAs in breast cancer and their potential role as prognostic and predictive biomarkers in patient management. Breast Cancer Res. 17, 21.
  39. Li J., Shen J., Zhao Y., Du F., Li M., Wu X., Chen Y., Wang S., Xiao Z., Wu Z. (2023) Role of miR-181a-5p in cancer (Review). Int. J. Oncol. 63(4), 108.
  40. Wang Y., Tan J., Wang L., Pei G., Cheng H., Zhang Q., Wang S., He C., Fu C., Wei Q. (2021) MiR-125 family in cardiovascular and cerebrovascular diseases. Front. Cell Dev. Biol. 9, 799049.
  41. Cui J. (2015) MiR-16-5p family as potential diagnostic biomarkers for cancer: a systematic review and meta-analysis. Int. J. Clin. Exp. Med. 8(2), 1703–1714.
  42. Grunert M., Appelt S., Dunkel I., Berger F., Sperling S.R. (2019) Altered microRNA and target gene expression related to Tetralogy of Fallot. Sci. Rep. 9(1), 19063.
  43. Chen Y., Wang X. (2020) miRDB: an online database for prediction of functional microRNA targets. Nucl. Acids Res. 48(D1), D127–D131.
  44. Lever J., Zhao E.Y., Grewal J., Jones M.R., Jones S.J.M. (2019) CancerMine: a literature-mined resource for drivers, oncogenes and tumor suppressors in cancer. Nat. Methods. 16(6), 505–507.
  45. Gutschner T., Diederichs S. (2012) The hallmarks of cancer: a long non-coding RNA point of view. RNA Biol. 9(6), 703–719.
  46. Stelzer G., Rosen N., Plaschkes I., Zimmerman S., Twik M., Fishilevich S., Stein T.I., Nudel R., Lieder I., Mazor Y. (2016) The GeneCards suite: from gene data mining to disease genome sequence analyses. Curr. Protoc. Bioinform. 54, 31–33.
  47. Kim H.J., Seo B.G., Seo E.C., Lee K.M., Hwangbo C. (2022) Checkpoint kinase 1 (CHK1) functions as both a diagnostic marker and a regulator of epithelial-to-mesenchymal transition (EMT) in triple-negative breast cancer. Curr. Issues Mol. Biol. 44(12), 5848–5865.
  48. Lopes J.L., Chaudhry S., Lopes G.S., Levin N.K., Tainsky M.A. (2019) FANCM, RAD1, CHEK1 and TP53I3 act as BRCA-like tumor suppressors and are mutated in hereditary ovarian cancer. Cancer Genet. 235–236, 57–64.
  49. Fadaka A.O., Bakare O.O., Sibuyi N.R.S., Klein A. (2020) Gene expression alterations and molecular analysis of CHEK1 in solid tumors. Cancers. 12(3), 662.
  50. Consortium A.P.G. (2017) AACR Project GENIE: Powering precision medicine through an international consortium. Cancer Discov. 7, 818–831.
  51. Wu M., Pang J.S., Sun Q., Huang Y., Hou J.Y., Chen G., Zeng J.J., Feng Z.B. (2019) The clinical significance of CHEK1 in breast cancer: a high-throughput data analysis and immunohistochemical study. Int. J. Clin. Exp. Pathol. 12(1), 1–20.
  52. Urtreger A.J., Kazanietz M.G., Bal de Kier Joffé E.D. (2012) Contribution of individual PKC isoforms to breast cancer progression. IUBMB life. 64(1), 18–26.
  53. McKiernan E., O’Brien K., Grebenchtchikov N., Geurts-Moespot A., Sieuwerts A.M., Martens J.W. (2008) Protein kinase Cdelta expression in breast cancer as measured by real-time PCR, western blotting and ELISA. Br. J. Cancer. 99, 1644–1650.
  54. Evans J.D., Cornford P.A., Dodson A., Neoptolemos J.P., Foster C.S. (2003) Expression patterns of protein kinase C isoenzymes are characteristically modulated in chronic pancreatitis and pancreatic cancer. Am. J. Clin. Pathol. 119, 392–402.
  55. Pongracz J., Clark P., Neoptolemos J.P., Lord J.M. (1995) Expression of protein kinase C isoenzymes in colorectal cancer tissue and their differential activation by different bile acids. Int. J. Cancer. 61, 35–39.
  56. Allen-Petersen B.L., Carter C.J, Ohm A.M., Reyland M.E. (2014) Protein kinase Cδ is required for ErbB2-driven mammary gland tumorigenesis and negatively correlates with prognosis in human breast cancer. Oncogene. 33(10), 1306–1315.
  57. Kim M., Jang K., Miller P., Picon-Ruiz M., Yeasky T.M., El-Ashry D., Slingerland J.M. (2017) VEGFA links self-renewal and metastasis by inducing Sox2 to repress miR-452, driving Slug. Oncogene. 36(36), 5199–5211.
  58. Adams J., Carder P.J., Downey S., Forbes M.A., MacLennan K., Allgar V., Kaufman S., Hallam S., Bicknell R., Walker J.J., Cairnduff F. (2000) Vascular endothelial growth factor (VEGF) in breast cancer: comparison of plasma, serum, and tissue VEGF and microvessel density and effects of tamoxifen. Cancer Res. 60(11), 2898–2905.
  59. Gasparini G. (2000) Prognostic value of vascular endothelial growth factor in breast cancer. Oncologist. 5, 37–44.
  60. Yoshiji H., Gomez D.E., Shibuya M., Thorgeirsson U.P. (1996) Expression of vascular endothelial growth factor, its receptor, and other angiogenic factors in human breast cancer. Cancer Res. 56(9), 2013–2016.
  61. Guidi A.J., Schnitt S.J., Fischer L., Tognazzi K., Harris J.R., Dvorak H.F., Brown L.F. (1997) Vascular permeability factor (vascular endothelial growth factor) expression and angiogenesis in patients with ductal carcinoma in situ of the breast. Cancer. 80(10), 1945–1953.
  62. Gasca J., Flores M.L., Giráldez S., Ruiz-Borrego M., Tortolero M., Romero F., Japón M.A., Sáez C. (2016) Loss of FBXW7 and accumulation of MCL1 and PLK1 promote paclitaxel resistance in breast cancer. Oncotarget. 7(33), 52751–52765.
  63. Strohmaier H., Spruck C.H., Kaiser P., Won K.A., Sangfelt O., Reed S.I. (2001) Human F-box protein hCdc4 targets cyclin E for proteolysis and is mutated in a breast cancer cell line. Nature. 413(6853), 316–322.
  64. Takada M., Zhang W., Suzuki A., Kuroda T.S., Yu Z., Inuzuka H., Gao D., Wan L., Zhuang M., Hu L., Zhai B., Fry C.J., Bloom K., Li G., Karpen G.H., Wei W., Zhang Q. (2017) FBW7 loss promotes chromosomal instability and tumorigenesis via сyclin E1/CDK2-mediated phosphorylation of CENP-A. Cancer Res. 77(18), 4881–4893.
  65. Gong L., Cui D., Liu D., Shen X., Pan H., Xiong X. (2022) FBXW7 inactivation induces cellular senescence via accumulation of p53. Cell Death Dis. 13(9), 788.
  66. Luo Y., Wang X., Wang H., Xu Y., Wen Q., Fan S., Zhao R., Jiang S., Yang J., Liu Y., Li X., Xiong W., Ma J., Peng S., Zeng Z., Li X., Phillips J.B., Li G., Tan M., Zhou M. (2015) High Bak expression is associated with a favorable prognosis in breast cancer and sensitizes breast cancer cells to paclitaxel. PLoS One. 10(9), e0138955.
  67. Liu Y., Ordovas J.M., Gao G., Province M., Straka R.J., Tsai M.Y., Lai C.Q., Zhang K., Borecki I., Hixson J.E., Allison D.B., Arnett D.K. (2008) The SCARB1 gene is associated with lipid response to dietary and pharmacological interventions. J. Hum. Genet. 53, 709–717.
  68. He L., Liang M., Guo W., Liu J., Yu Y. (2022) HOXA1 is a radioresistance marker in multiple cancer types. Front. Oncol. 12, 965427.
  69. Song X., Zhou L., Yang W., Li X., Ma J., Qi K., Liang R., Li M., Xie L., Su T., Huang D., Liang B. (2024) PHLDA1 is a P53 target gene involved in P53-mediated cell apoptosis. Mol. Cell Biochem. 479(3), 653–664.
  70. Gao X., Wang M., Zhang Y., Xu Z., Ding J., Tang J. (2019) MicroRNA-16 sensitizes drug-resistant breast cancer cells to adriamycin by targeting Wip1 and Bcl-2. Oncol. Lett. 18(3), 2897–2906.
  71. Sun Y.M., Lin K.Y., Chen Y.Q. (2013) Diverse functions of miR-125 family in different cell contexts. J. Hematol. Oncol. 6, 6.
  72. Shah N.R., Chen H. (2014) MicroRNAs in pathogenesis of breast cancer: Implications in diagnosis and treatment. World J. Clin. Oncol. 5(2), 48–60.
  73. Tang F., Zhang R., He Y., Zou M., Guo L., Xi T. (2012) MicroRNA-125b induces metastasis by targeting STARD13 in MCF-7 and MDA-MB-231 breast cancer cells. PLoS One. 7(5), e35435.
  74. Bockmeyer C.L., Christgen M., Müller M., Fischer S., Ahrens P., Länger F., Kreipe H., Lehmann U. (2011) MicroRNA profiles of healthy basal and luminal mammary epithelial cells are distinct and reflected in different breast cancer subtypes. Br. Cancer Res. Treatment. 130(3), 735–745.
  75. Ghafouri-Fard S., Khoshbakht T., Hussen B.M., Abdullah S.T., Taheri M., Samadian M. (2022) A review on the role of mir-16-5p in the carcinogenesis. Cancer Cell Int. 22(1), 342.
  76. Guo L.J., Zhang Q.Y. (2012) Decreased serum miR-181a is a potential new tool for breast cancer screening. Int. J. Mol. Med. 30(3), 680–686.
  77. Zhai Z., Mu T., Zhao L., Li Y., Zhu D., Pan Y. (2022) MiR-181a-5p-5p facilitates proliferation, invasion, and glycolysis of breast cancer through NDRG2-mediated activation of PTEN/AKT pathway. Bioengineered. 13(1), 83–95.
  78. Li R., Qu H., Wang S., Chater J.M., Wang X., Cui Y., Yu L., Zhou R., Jia Q., Traband R., Wang M., Xie W., Yuan D., Zhu J., Zhong W.D., Jia Z. (2022) CancerMIRNome: an interactive analysis and visualization database for miRNome profiles of human cancer. Nucl. Acids Res. 50(D1), D1139–D1146.
  79. Çorbacıoglu S.K., Aksel G. (2023) Receiver operating characteristic curve analysis in diagnostic accuracy studies: a guide to interpreting the area under the curve value. Turk. J. Emerg. Med. 23(4), 195–198.
  80. Cellini F., Morganti A.G., Genovesi D., Silvestris N., Valentini V. (2014) Role of microRNA in response to ionizing radiations: evidences and potential impact on clinical practice for radiotherapy. Molecules. 19(4), 5379–5401.
  81. Templin T., Paul S., Amundson S.A., Young E.F., Barker C.A., Wolden S.L., Smilenov L.B. (2011) Radiation-induced micro-RNA expression changes in peripheral blood cells of radiotherapy patients. Int. J. Radiat. Oncol. Biol. Phys. 80(2), 549–557.
  82. Wagner-Ecker M., Schwager C., Wirkner U., Abdollahi A., Huber P.E. (2010) MicroRNA expression after ionizing radiation in human endothelial cells. Radiat. Oncol. 5, 25.
  83. Voshedskiy V.I., Dzhenkova E.A., Timoshkina N.N., Alliluev I.A., Pushkin A.A., Gusareva M.A., Sakun P.G., Vlasov S.G., Shaposhnikov A.V., Engibaryan M.A., Nikolaeva N.V., Lysenko I.B. (2021) Changes in microRNA expression under exposure to radiosurgical doses of ionizing radiation in the culture of nonsmall cell lung cancer H1299. Modern Problems Sci. Edu. 4, 61–61.
  84. Rahman M., Lovat F., Romano G., Calore F., Acunzo M., Bell E.H., Nana-Sinkam P. (2014) MiR-15b/16-2 regulates factors that promote p53 phosphorylation and augments the DNA damage response following radiation in the lung. J. Biol. Chem. 289(38), 26406–26416.
  85. Girardi C., De Pittà C., Casara S., Sales G., Lanfranchi G., Celotti L., Mognato M. (2012) Analysis of miRNA and mRNA expression profiles highlights alterations in ionizing radiation response of human lymphocytes under modeled microgravity. PLoS One. 7(2), e31293.
  86. Михайлов В.Ф., Шуленина Л.В., Раева Н.Ф., Васильева И.М., Салеева Д.В., Незнанова М.В., Засухина Г.Д. (2019) Влияние малых доз ионизирующей радиации на экспрессию генов и некодирующих РНК в нормальных и злокачественных клетках человека. Цитология. 61(6), 427–438.
  87. Wang Y., Zeng G., Jiang Y. (2020) The emerging roles of miR-125b-5p in cancers. Cancer Manag. Res. 12, 1079–1088.
  88. Ghafouri-Fard S., Khoshbakht T., Hussen B.M., Abdullah S.T., Taheri M., Samadian M. (2022) A review on the role of mir-16-5p in the carcinogenesis. Cancer Cell Int. 22(1), 342.
  89. Kameswaran V., Bramswig N.C., McKenna L.B. (2014) Epigenetic regulation of the DLK1-MEG3 microRNA cluster in human type 2 diabetic islets. Cell Metab. 19(1), 135–145.
  90. Tang F., Zhang R., He Y., Zou M., Guo L., Xi T. (2012) MicroRNA-125b induces metastasis by targeting STARD13 in MCF-7 and MDA-MB-231 breast cancer cells. PLoS One. 7(5), e35435.
  91. Zhou M., Liu Z., Zhao Y., Ding Y., Liu H., Xi Y., Xiong W., Li G., Lu J., Fodstad O., Riker A.I., Tan M. (2010) MicroRNA-125b confers the resistance of breast cancer cells to paclitaxel through suppression of pro-apoptotic Bcl-2 antagonist killer 1 (Bak1) expression. J. Biol. Chem. 285(28), 21496–21507.
  92. Qu Y., Liu H., Lv X. (2017) MicroRNA-16-5p overexpression suppresses proliferation and invasion as well as triggers apoptosis by targeting VEGFA expression in breast carcinoma. Oncotarget. 8(42), 72400–72410.
  93. Lezina L., Purmessur N., Antonov A.V., Ivanova T., Karpova E., Krishan K., Ivan M., Aksenova V., Tentler D., Garabadgiu A.V., Melino G., Barlev N.A. (2013) MiR-16-5p and miR-26a target checkpoint kinases Wee1 and Chk1 in response to p53 activation by genotoxic stress. Cell Death Disease. 4(12), e953.
  94. Liu Y., Cheng T., Du Y., Hu X., Xia W. (2020) LncRNA LUCAT1/miR-181a-5p-5p axis promotes proliferation and invasion of breast cancer via targeting KLF6 and KLF15. BMC Mol. Cell. Biol. 21, 69.
  95. Kastrati I., Canestrari E., Frasor J. (2015) PHLDA1 expression is controlled by an estrogen receptor-NF-κB-miR-181 regulatory loop and is essential for formation of ER+ mammospheres. Oncogene. 34(18), 2309–2316.
  96. Zografos E., Zagouri F., Kalapanida D., Zakopoulou R., Kyriazoglou A., Apostolidou K., Gazouli M., Dimopoulos M.A. (2019) Prognostic role of microRNAs in breast cancer: a systematic review. Oncotarget. 10(67), 7156–7178.
  97. Рябчиков Д.А., Воротников И.К., Талипов О.А., Чулкова С.В., Логинов В.И., Снеговой А.В., Винокуров М.С., Казаков А.М., Хагажеева М.Н., Бердова Ф.К. (2020) МикроРНК и их роль в патогенезе и диагностике рака молочной железы. Мед. алфавит. 8, 12–15.
  98. Гришина К.А., Хайленко В.А., Хайленко Д.В., Карпухин А.В. (2018) Роль микроРНК в развитии рака молочной железы и их потенциал в качестве биомаркеров этого заболевания. Опухоли женской репродуктивной системы. 14(3), 40–47.
  99. Gong C., Tan W., Chen K., You N., Zhu S., Liang G., Xie X., Li Q., Zeng Y., Ouyang N., Li Z., Zeng M., Zhuang S., Lau W.Y., Liu Q., Yin D., Wang X., Su F., Song E. (2016) Prognostic value of a BCSC-associated microRNA signature in hormone receptor-positive HER2-negative breast cancer. EBioMedicine. 11, 199–209.
  100. Cascione L., Gasparini P., Lovat F., Carasi S., Pulvirenti A., Ferro A., Alder H., He G., Vecchione A., Croce C.M., Shapiro C.L., Huebner K. (2013) Integrated microRNA and mRNA signatures associated with survival in triple negative breast cancer. PLoS One. 8(2), e55910.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Диаграмма Эйлера–Венна, отражающая количество общих генов-мишеней miR-125b-5p (а); miR-16-5p (б) и miR-181a-5p (в). В квадратах указаны гены, в бóльшей степени соответствующие критериям отбора.

Скачать (259KB)
3. Рис. 2. Результаты анализа обогащения набора генов с использованием CancerHallmarks.com. Каждый из окрашенных участков обозначает один из 10 ключевых признаков рака. Указаны гены, связанные с этими признаками. Серым выделены статистически незначимые участки (скорректированный р > 0.05). Размер участков соответствует силе обогащения по сравнению с референсным набором генов, связанных с канцерогенезом.

Скачать (456KB)
4. Рис. 3. Диаграммы относительного содержания циркулирующих в крови miR-125b-5p (а), miR 16-5p (б), miR-181a-5p (в). Заимствовано из базы данных CancerMIRNome.

Скачать (209KB)
5. Рис. 4. ROC-кривые диагностической значимости циркулирующих в крови miR-125b-5p (а), miR-16-5p (б) и miR-181a-5p (в) при РМЖ. Заимствовано из базы данных CancerMIRNome.

Скачать (257KB)

© Российская академия наук, 2025