Получение и фотокаталитические свойства композитных фотокатализаторов TiO2-MCM-22

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Разработан быстрый и простой метод синтеза эффективных фотокатализаторов на основе диоксида титана и мезопористого цеолита MCM-22 из различных прекурсоров титана. Полученные фотокатализаторы были проанализированы методами рентгенофазового анализа (РФА), низкотемпературной адсорбции азота, растровой электронной микроскопии (РЭМ). Фотокаталитическая активность образцов TiO2-MCM-22 была протестирована в реакциях фотокаталитического разложения красителя кристаллического фиолетового и окисления ацетона. Наибольшую фотокаталитическую активность продемонстрировал образец с соотношением TiO2-цеолит 1 : 1, полученный из тетрахлорида титана. Степень деградации кристаллического фиолетового составила 22% при УФ-облучении в течение 2 ч, а в реакции разложения ацетона активность составила 642 млн д. (выход CO2).

Texto integral

Acesso é fechado

Sobre autores

Алексей Садовников

Институт нефтехимического синтеза им. А. В. Топчиева РАН; Институт общей и неорганической химии им. Н. С. Курнакова РАН

Autor responsável pela correspondência
Email: sadovnikov@ips.ac.ru
ORCID ID: 0000-0002-3574-0039
Rússia, Москва, 119991; Москва, 119991

Евгений Наранов

Институт нефтехимического синтеза им. А. В. Топчиева РАН

Email: sadovnikov@ips.ac.ru
ORCID ID: 0000-0002-3815-9565

к. х. н.

Rússia, Москва, 119991

Кристина Новоселова

Институт общей и неорганической химии им. Н. С. Курнакова РАН

Email: sadovnikov@ips.ac.ru
ORCID ID: 0009-0006-4139-1476
Rússia, Москва, 119991

Рикардо Родригес Пинеда

Институт нефтехимического синтеза им. А. В. Топчиева РАН

Email: sadovnikov@ips.ac.ru
ORCID ID: 0009-0001-2744-2242
Rússia, Москва, 119991

Антон Максимов

Институт нефтехимического синтеза им. А. В. Топчиева РАН

Email: sadovnikov@ips.ac.ru
ORCID ID: 0000-0001-9297-4950

д. х. н., академик РАН

Rússia, Москва, 119991

Bibliografia

  1. Dong H., Zeng G., Tang L., Fan C., Zhang C., He X., He Y. An overview on limitations of TiO2-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures // Water Res. 2015. V. 79. P. 128–146. https://dx.doi.org/10.1016/j.watres.2015.04.038
  2. Haghighat Mamaghani A.H., Haghighat F., Lee C.-S. Role of titanium dioxide (TiO2) structural design/morphology in photocatalytic air purification // Appl. Catal. B: Environ. 2020. V. 269. ID118735. https://dx.doi.org/10.1016/j.apcatb.2020.118735
  3. Ao C.H., Lee S.C. Indoor air purification by photocatalyst TiO2 immobilized on an activated carbon filter installed in an air cleaner // Chem. Eng. Sci. 2005. V. 60. № 1. P. 103–109. https://dx.doi.org/10.1016/j.ces.2004.01.073
  4. Sadovnikov A.A., Baranchikov A.E., Zubavichus Y.V., Ivanova O.S., Murzin V.Y., Kozik V.V., Ivanov V.K. Photocatalytically active fluorinated nano-titania synthesized by microwave-assisted hydrothermal treatment // J. Photochem. Photobiol. A. 2015. V. 303–304. P. 36–43. https://dx.doi.org/10.1016/j.jphotochem.2015.01.010
  5. Sadovnikov A.A., Naranov E.R., Maksimov A.L., Baranchikov A.E., Ivanov V.K. Photocatalytic activity of fluorinated titanium dioxide in ozone decomposition: 1 // Russ. J. Appl. Chem. 2022. V. 95, № 1. P. 118–125. https://dx.doi.org/10.1134/S1070427222010153
  6. Rueda-Marquez J.J., Levchuk I., Fernández Ibañez P., Sillanpää M. A critical review on application of photocatalysis for toxicity reduction of real wastewaters // J. Cleaner Prod. 2020. V. 258. ID120694. https://dx.doi.org/10.1016/j.jclepro.2020.120694
  7. Shan A.Y., Mohd. Ghazi T.I., Rashid S.A. Immobilisation of titanium dioxide onto supporting materials in heterogeneous photocatalysis: A review // Appl. Catal. A: Gen. 2010. V. 389, № 1–2. P. 1–8. https://dx.doi.org/10.1016/j.apcata.2010.08.053
  8. Lin L., Wang H., Xu P. Immobilized TiO2-reduced graphene oxide nanocomposites on optical fibers as high performance photocatalysts for degradation of pharmaceuticals // Chem. Eng. J. 2017. V. 310. Pt. 2. P. 389–398. https://dx.doi.org/10.1016/j.cej.2016.04.024
  9. Tran M.L., Fu C.-C., Chiang L.-Y., Hsieh C.-T., Liu S.-H., Juang R.-S. Immobilization of TiO2 and TiO2-GO hybrids onto the surface of acrylic acid-grafted polymeric membranes for pollutant removal: Analysis of photocatalytic activity // J. Environ. Chem. Eng. 2020. V. 8, № 5. ID104422. https://dx.doi.org/10.1016/j.jece.2020.104422
  10. Gar Alalm M., Tawfik A., Ookawara S. Enhancement of photocatalytic activity of TiO2 by immobilization on activated carbon for degradation of pharmaceuticals // J. Environ. Chem. Eng. 2016. V. 4, № 2. P. 1929–1937. https://dx.doi.org/10.1016/j.jece.2016.03.023
  11. Bahrudin N.N. Evaluation of degradation kinetic and photostability of immobilized TiO2/activated carbon bilayer photocatalyst for phenol removal // Appl. Surf. Sci. Adv. 2022. V. 7. ID100208. https://dx.doi.org/10.1016/j.apsadv.2021.100208
  12. Li F., Sun S., Jiang Y., Xia M., Sun M., Xue B. Photodegradation of an azo dye using immobilized nanoparticles of TiO2 supported by natural porous mineral // J. Hazard. Mater. 2008. V. 152, № 3. P. 1037–1044. https://dx.doi.org/10.1016/j.jhazmat.2007.07.114
  13. de Oliveira W.V., Morais A.Í.S., Honorio L.M.C., Trigueiro P.A., Almeida L.C., Pena Garcia R.R., Viana B.C., Furtini M.B., Silva-Filho E.C., Osajima J.A. TiO2 Immobilized on Fibrous Clay as Strategies to Photocatalytic Activity // Mat. Res. 2020. V. 23. № 1. ID e20190463. https://dx.doi.org/10.1590/1980-5373-mr-2019-0463
  14. Yu J.C., Wang X., Fu X. Pore-Wall Chemistry and Photocatalytic Activity of Mesoporous Titania Molecular Sieve Films // Chem. Mater. 2004. V. 16, № 8. P. 1523–1530. https://dx.doi.org/10.1021/cm049955x
  15. Younis S.A., Amdeha E., El-Salamony R.A. Enhanced removal of p-nitrophenol by β-Ga2O3-TiO2 photocatalyst immobilized onto rice straw-based SiO2 via factorial optimization of the synergy between adsorption and photocatalysis // J. Environ. Chem. Eng. 2021. V. 9, № 1. ID104619. https://dx.doi.org/10.1016/j.jece.2020.104619
  16. Wang B., Zhang G., Sun Z., Zheng S. Synthesis of natural porous minerals supported TiO2 nanoparticles and their photocatalytic performance towards Rhodamine B degradation // Powder Technol. 2014. V. 262. P. 1–8. https://dx.doi.org/10.1016/j.powtec.2014.04.050
  17. Jansson I., Suárez S., Garcia-Garcia F.J., Sánchez B. Zeolite–TiO2 hybrid composites for pollutant degradation in gas phase // Appl. Catal. B: Environ. 2015. V. 178. P. 100–107. https://dx.doi.org/10.1016/j.apcatb.2014.10.022
  18. Hu G., Yang J., Duan X., Farnood R., Yang C., Yang J., Liu W., Liu Q. Recent developments and challenges in zeolite-based composite photocatalysts for environmental applications // Chem. Eng. J. 2021. V. 417. ID129209. https://dx.doi.org/10.1016/j.cej.2021.129209
  19. Kovalevskiy N.S., Lyulyukin M.N., Selishchev D.S., Kozlov D.V. Analysis of air photocatalytic purification using a total hazard index: Effect of the composite TiO2/zeolite photocatalyst // J. Hazard. Mater. 2018. V. 358. P. 302–309. https://dx.doi.org/10.1016/j.jhazmat.2018.06.035
  20. Jiang N., Shang R., Heijman S.G.J., Rietveld L.C. High-silica zeolites for adsorption of organic micro-pollutants in water treatment: A review // Water Res. 2018. V. 144. P. 145–161. https://dx.doi.org/10.1016/j.watres.2018.07.017
  21. Corma A., Corell C., Pérez-Pariente J. Synthesis and characterization of the MCM-22 zeolite // Zeolites. 1995. V. 15, № 1. P. 2–8. https://dx.doi.org/10.1016/0144-2449(94)00013-I
  22. Sadovnikov A.A., Nechaev E.G., Beltiukov A.N., Gavrilov A.I., Makarevich A.M., Boytsova O.V. Titania mesocrystals: working surface in photocatalytic reactions // Russ. J. Inorg. Chem. 2021. V. 66, № 4. P. 460–467. https://dx.doi.org/10.1134/S0036023621040197
  23. Садовников А.А., Новоселова К.Н., Судьин В.В., Наранов Е.Р. Влияние аниона аммиачного комплекса серебра на активность сформированных in situ Ag/TiO2-катализаторов // Нефтехимия. 2024. Т. 64, № 5. С. 491–498. https://dx.doi.org/10.31857/S0028242124050077

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Diffraction patterns of MCM-22/TiO2 photocatalyst samples with different MCM-22: TiO2 ratios obtained using titanium tetrachloride.

Baixar (139KB)
3. Fig. 2. SEM images of the synthesized zeolite MCM-22.

Baixar (85KB)
4. Fig. 3. SEM images of catalyst samples: (a) MCM-22/TiO2 (9:1), (b) MCM-22/TiO2 (3:1), (c) MCM-22/TiO2 (1:1) from titanium tetrachloride, (d) MCM-22/TiO2 (1:1) from titanium isopropoxide at a magnification of 100,000 x.

Baixar (441KB)
5. Fig. 4. XPS spectra of O1s, Si2p, Al2p of the MCM-22/TiO2 (3:1) sample.

Baixar (125KB)
6. Fig. 5. Comparison of the rates of photocatalytic decomposition of crystal violet dye in the presence of different samples of titanium dioxide under UV irradiation: (a) rate of photocatalytic decomposition of crystal violet dye in the presence of different samples of titanium dioxide; (b) dependence of the concentration of formed CO2 in the reaction of photocatalytic decomposition of acetone under UV irradiation of different studied photocatalysts; (c) efficiency of photocatalytic oxidation of acetone under UV irradiation.

Baixar (127KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025