Investigation of efficiency of DoA algorithm on the base of experimental data and numerical simulations in automotive distributed system of incoherent radars

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Investigation of efficiency of proposed DoA estimation algorithm for system of distributed incoherent automotive radars is performed on the base of experimental data and numerical simulation. It is shown that the proposed algorithm correctly recognizes the position of targets in considered experimental scenarios. Comparative numerical simulations show the efficiency of the proposed algorithm compared to the characteristics of single radar.

Full Text

Restricted Access

About the authors

I. V. Artyukhin

Nizhny Novgorod State University n. a. N.I. Lobachevsky

Author for correspondence.
Email: artjukhin@rf.unn.ru
Russian Federation, Gagarina ave., 23, Nizhny Novgorod, 603950

A. G. Flaksman

Nizhny Novgorod State University n. a. N.I. Lobachevsky

Email: artjukhin@rf.unn.ru
Russian Federation, Gagarina ave., 23, Nizhny Novgorod, 603950

A. E. Rubtsov

Nizhny Novgorod State University n. a. N.I. Lobachevsky

Email: artjukhin@rf.unn.ru
Russian Federation, Gagarina ave., 23, Nizhny Novgorod, 603950

References

  1. Gottinger M., Hoffmann M., Christmann M. et. al. // IEEE J. Microwaves. 2021. V. 1. № 1. P. 149. https://doi.org/10.1109/JMW.2020.3034475
  2. Waldschmidt C., Hasch J., Menzel W. // IEEE J. Microwaves. 2021. V. 1. P. 135. https://doi.org/10.1109/JMW.2020.3033616
  3. Черняк В.С. Многопозиционная радиолокация. М.: Радио и связь, 1993.
  4. Patole S., Torlak M., Wang D., Ali M. // IEEE Signal Process. Mag. 2017. V. 34. № 2. P. 22. https://doi.org/10.1109/MSP.2016.2628914
  5. Ziegler J., Bender Ph., Schreiber M. et al. // IEEE Intell. Transp. Syst. Mag. 2014. V. 6. № 2. P. 8. https://doi.org/10.1109/MITS.2014.2 306552
  6. Deng H. // IEEE Aerosp. Electron. Syst. Mag. 2012. V. 27. № 5. P. 28. https://doi.org/10.1109/MAES.2012.6226692
  7. Bialer O., Jonas A., Tirer T. // IEEE Sensors J. 2021. V. 21. № 16. P. 17846. https://doi.org/10.1109/JSEN.2021.3085677
  8. Folster F., Rohling H., Lubbert U. // IEEE Int. Radar Conf. 2005. P. 871. https://doi.org/10.1109/RADAR.2005.1435950
  9. Bialer O., Kolpinizki S. // IEEE Int. Conf. on Acoustics, Speech and Signal Processing. 2019. P. 4175. https://doi.org/10.1109/ICASSP.2019.8682458
  10. Артюхин И.В., Аверин И.М., Флаксман А.Г., Рубцов А.Е. // Журн. радиоэлектроники. 2023. № 4. https://doi.org/10.30898/16841719.2023.4.2
  11. Артюхин И.В., Аверин И.М., Флаксман А.Г., Рубцов А.Е. // IX Int. Conf. “Engineering & Telecommunication En&T-2022”. М.: МФТИ. 2022. С. 5.
  12. Widrow B., Stearn S.D. Adaptive Signal Processing. Prentice-Hall, Englewood Cliffs, 1985.
  13. Tuncer T.E., Friedlander B. Classical and Modern Direction-of-Arrival Estimation. Burlington; MA: Acad. Press, Inc. 2009.
  14. Li J., Stoica P. MIMO Radar Signal Processing. Hoboken; N.J.: Wiley-IEEE Press, 2009.
  15. Patole S., Torlak M., Wang D., Ali M. // IEEE Signal Processing Magazine. 2017. V. 34. № 2. P. 22. https://doi.org/10.1109/MSP.2016.2628914

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Coordinate system, location of radars and targets.

Download (102KB)
3. Fig. 2. Signal processing scheme for estimating arrival angles.

Download (228KB)
4. Fig. 3. Diagram of a two-channel compensator.

Download (79KB)
5. Fig. 4. The conditional scheme of the experiment.

Download (50KB)
6. 5. An example of experimental data processing: red/blue dots represent solutions obtained using the scanning procedure for single radars SRR1 and SRR2, respectively, green dots represent estimates of the objectives of the proposed algorithm for a distributed system.

Download (95KB)
7. 6. The probability of correctly detecting the number of targets depending on the SNR: curve 1 is the proposed algorithm for a distributed system, LC ACM; curves 2 and 3 are the scanning method for single radar SRR1 and SRR2; curves 4 and 5 are the classical Capon method for single radar SRR1 and SRR2.

Download (96KB)
8. Fig. 7. Dependence of ISCED (a) and CO (b) on SNR: curve 1 is the proposed algorithm for a distributed system, LC ACM; curves 2 and 3 are the scanning method for single radar SRR1 and SRR2; curves 4 and 5 are the classical Capon method for single radar SRR1 and SRR2.

Download (199KB)

Copyright (c) 2024 Russian Academy of Sciences