Over-range polyconical antenna with gradient dielectric lens

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

An omnidirectional in one plane polyconical antenna with a torroidal gradient dielectric anisotropic Mikaelian lens, which is made in the form of a set of parallel coaxial disks made of polystyrene of various thicknesses, is proposed and studied using numerical modeling. As a result of the study and optimization of parameters, it was shown that the optimized polyconical antenna with the lens is matched and provides high efficiency in the 40:1 frequency band. The results of numerical modeling are confirmed by the results of measurements of the manufactured antenna prototype.

Full Text

Restricted Access

About the authors

V. А. Kaloshin

Kotel’nikov Institute of Radioengeneering and Electronics RAS

Author for correspondence.
Email: vak@cplire.ru
Russian Federation, Mokhovaya St., 11, build. 7, Moscow, 125007

Тхань Nguyen The

Moscow Institute of Physics and Technology (National Research University)

Email: vak@cplire.ru
Russian Federation, Institutsky per. 9, Dolgoprudny, Moscow region, 141700

References

  1. Kалошин В.А., Мартынов Е.С., Скородумова Е.А. // РЭ. 2011. Т. 56. № 9. С. 1094.
  2. Uskov G.K., Smuseva K.V., Seregina E.A., Bobreshov A.M. // 2022 IEEE8th All-Russian Microwave Conference (RMC). Moscow. 23–25 Nov. N.Y.: IEEE, 2022. P. 191.
  3. Titan Z., Sievert B., Eube M. et al. // 2022 52th Europ. Microwave Conf. (EuMC). Milan. 27–29 Sept. N.Y.: IEEE, 2022. P. 612.
  4. Zhang Z.-Y., Leung K.W., Lu K. // IEEE Trans. 2023. V. AP-71. № 1. P. 58.
  5. Dubrovka F.F., Piltyay S., Mоvchan M., Zakharchuk I. // IEEE Trans. 2023. AP-71. № 4. P. 2922.
  6. Kалошин В.А. // ДАН. 2016. Т. 470. № 2. С. 253.
  7. Pытов С.М. // ЖЭТФ. 1955. Т. 2. № 3. С. 605.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Cross-section of a polyconical antenna with an anisotropic gradient lens.

Download (195KB)
3. Fig. 2. Fill factor versus coordinate.

Download (55KB)
4. Fig. 3. Refractive index tensor components versus coordinates: nz (curve 1), ny (curve 2).

Download (57KB)
5. Fig. 4. Ray trajectories in the lens.

Download (73KB)
6. Fig. 5. Field distribution in the vertical cross-section of a polyconical antenna with a lens.

Download (194KB)
7. Fig. 6. Model of a polyconical antenna with a lens.

Download (166KB)
8. Fig. 7. Reflectivity (RC) of a polyconical antenna with a lens versus frequency: curve 1 – calculation using the MRDC, curve 2 – calculation using the FEM, curve 3 – experimental data.

Download (229KB)
9. Fig. 8. Normalized radiation patterns of the polyconical antenna at frequencies of 2 (curves 1, 2) and 5 (curves 3, 4) GHz. Curves 1 and 3 are numerical simulation, curves 2 and 4 are experimental data.

Download (147KB)
10. Fig. 9. Normalized radiation patterns of the polyconical antenna at frequencies of 10 (curves 1, 2) and 15 (curves 3, 4) GHz. Curves 1 and 3 are numerical simulation, curves 2 and 4 are experimental data.

Download (162KB)
11. Fig. 10. Normalized radiation patterns of the polyconical antenna at frequencies of 25 (curves 1, 2) and 35 (curves 3, 4) GHz. Curves 1 and 3 are numerical simulation, curves 2 and 4 are experimental data.

Download (129KB)
12. Fig. 11. Dependence of the gain of a polyconical antenna on frequency: curve 1 – numerical simulation, curve 2 – experimental data.

Download (103KB)
13. Fig. 12. Dependence of the gain of a polyconical antenna on frequency: curve 1 – numerical simulation, curve 2 – experimental data.

Download (103KB)

Copyright (c) 2025 Russian Academy of Sciences