Over-range polyconical antenna with gradient dielectric lens

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

An omnidirectional in one plane polyconical antenna with a torroidal gradient dielectric anisotropic Mikaelian lens, which is made in the form of a set of parallel coaxial disks made of polystyrene of various thicknesses, is proposed and studied using numerical modeling. As a result of the study and optimization of parameters, it was shown that the optimized polyconical antenna with the lens is matched and provides high efficiency in the 40:1 frequency band. The results of numerical modeling are confirmed by the results of measurements of the manufactured antenna prototype.

Texto integral

Acesso é fechado

Sobre autores

V. Kaloshin

Kotel’nikov Institute of Radioengeneering and Electronics RAS

Autor responsável pela correspondência
Email: vak@cplire.ru
Rússia, Mokhovaya St., 11, build. 7, Moscow, 125007

Тхань Nguyen The

Moscow Institute of Physics and Technology (National Research University)

Email: vak@cplire.ru
Rússia, Institutsky per. 9, Dolgoprudny, Moscow region, 141700

Bibliografia

  1. Kалошин В.А., Мартынов Е.С., Скородумова Е.А. // РЭ. 2011. Т. 56. № 9. С. 1094.
  2. Uskov G.K., Smuseva K.V., Seregina E.A., Bobreshov A.M. // 2022 IEEE8th All-Russian Microwave Conference (RMC). Moscow. 23–25 Nov. N.Y.: IEEE, 2022. P. 191.
  3. Titan Z., Sievert B., Eube M. et al. // 2022 52th Europ. Microwave Conf. (EuMC). Milan. 27–29 Sept. N.Y.: IEEE, 2022. P. 612.
  4. Zhang Z.-Y., Leung K.W., Lu K. // IEEE Trans. 2023. V. AP-71. № 1. P. 58.
  5. Dubrovka F.F., Piltyay S., Mоvchan M., Zakharchuk I. // IEEE Trans. 2023. AP-71. № 4. P. 2922.
  6. Kалошин В.А. // ДАН. 2016. Т. 470. № 2. С. 253.
  7. Pытов С.М. // ЖЭТФ. 1955. Т. 2. № 3. С. 605.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Cross-section of a polyconical antenna with an anisotropic gradient lens.

Baixar (195KB)
3. Fig. 2. Fill factor versus coordinate.

Baixar (55KB)
4. Fig. 3. Refractive index tensor components versus coordinates: nz (curve 1), ny (curve 2).

Baixar (57KB)
5. Fig. 4. Ray trajectories in the lens.

Baixar (73KB)
6. Fig. 5. Field distribution in the vertical cross-section of a polyconical antenna with a lens.

Baixar (194KB)
7. Fig. 6. Model of a polyconical antenna with a lens.

Baixar (166KB)
8. Fig. 7. Reflectivity (RC) of a polyconical antenna with a lens versus frequency: curve 1 – calculation using the MRDC, curve 2 – calculation using the FEM, curve 3 – experimental data.

Baixar (229KB)
9. Fig. 8. Normalized radiation patterns of the polyconical antenna at frequencies of 2 (curves 1, 2) and 5 (curves 3, 4) GHz. Curves 1 and 3 are numerical simulation, curves 2 and 4 are experimental data.

Baixar (147KB)
10. Fig. 9. Normalized radiation patterns of the polyconical antenna at frequencies of 10 (curves 1, 2) and 15 (curves 3, 4) GHz. Curves 1 and 3 are numerical simulation, curves 2 and 4 are experimental data.

Baixar (162KB)
11. Fig. 10. Normalized radiation patterns of the polyconical antenna at frequencies of 25 (curves 1, 2) and 35 (curves 3, 4) GHz. Curves 1 and 3 are numerical simulation, curves 2 and 4 are experimental data.

Baixar (129KB)
12. Fig. 11. Dependence of the gain of a polyconical antenna on frequency: curve 1 – numerical simulation, curve 2 – experimental data.

Baixar (103KB)
13. Fig. 12. Dependence of the gain of a polyconical antenna on frequency: curve 1 – numerical simulation, curve 2 – experimental data.

Baixar (103KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025