Влияние хитозана на электронное состояние и распределение родия на поверхности цеолитного катализатора по данным ик-спектроскопии адсорбированного монооксида углерода
- Авторы: Шилина М.И.1, Обухова Т.К.2, Батова Т.И.2, Колесниченко Н.В.2
-
Учреждения:
- Московский государственный университет им. М.В. Ломоносова
- Институт нефтехимического синтеза им. А.В. Топчиева РАН
- Выпуск: Том 97, № 7 (2023)
- Страницы: 944-951
- Раздел: ХИМИЧЕСКАЯ КИНЕТИКА И КАТАЛИЗ
- Статья получена: 27.02.2025
- Статья опубликована: 01.07.2023
- URL: https://innoscience.ru/0044-4537/article/view/668695
- DOI: https://doi.org/10.31857/S0044453723070269
- EDN: https://elibrary.ru/SMGLNH
- ID: 668695
Цитировать
Аннотация
Методами инфракрасной спектроскопия диффузного отражения адсорбированного монооксида углерода и рентгеновской абсорбционной спектроскопии исследованы цеолитные катализаторы конверсии диметилового эфира в низшие олефины с одноатомным распределением родия. Для одноатомного распределения активного компонента на поверхности носителя цеолит предварительно обрабатывали ультразвуком, а в качестве среды для диспергирования родия на стадии пропитки использовали полимер (гидрохлорид хитозана). Для сравнения исследован образец, приготовленный методом традиционной пропитки цеолита водным раствором хлорида родия. Показано, что независимо от способа нанесения с участием полимера или без него родий в структуре цеолита, обработанного ультразвуком, находится в виде изолированных металлических центров. Использование хитозана при синтезе способствует более дисперсному распределению родия на внешней поверхности цеолита и большей окислительной способности катализатора.
Об авторах
М. И. Шилина
Московский государственный университет им. М.В. Ломоносова
Email: batova.ti@ips.ac.ru
Россия, Москва
Т. К. Обухова
Институт нефтехимического синтеза им. А.В. Топчиева РАН
Email: batova.ti@ips.ac.ru
Россия, Москва
Т. И. Батова
Институт нефтехимического синтеза им. А.В. Топчиева РАН
Email: batova.ti@ips.ac.ru
Россия, Москва
Н. В. Колесниченко
Институт нефтехимического синтеза им. А.В. Топчиева РАН
Автор, ответственный за переписку.
Email: batova.ti@ips.ac.ru
Россия, Москва
Список литературы
- Naranov E.R., Dement’ev K.I., Gerzeliev I.M. et al. // Pet. Chem. 2019. V. 59. № 3. P. 247. https://doi.org/10.1134/S0965544119030101
- Kolesnichenko N.V., Ezhova N.N., Snatenkova Yu.M. // Russ. Chem. Rev. 2020. V. 89. № 2. P. 191. [Колесниченко Н.В., Ежова Н.Н., Снатенкова Ю.М. // Успехи химии. 2020. Т. 89. № 2. С. 191. https://doi.org/10.1070/RCR4900].10.1070/RCR4900
- Khadzhiev S.N., Ezhova N.N., Yashina O.V. // Pet. Chem. 2017. V. 57. № 7. P. 553. [Хаджиев С.Н., Ежова Н.Н., Яшина О.В. // Нефтехимия. 2017. Т. 2. № 1. С. 3. https://doi.org/10.1134/S241421581701004X]https://doi.org/10.1134/S0965544117070040
- Ezhova N.N., Kolesnichenko N.V., Batova T.I. // Pet. Chem. 2020. V. 60. № 4. P. 459. [Ежова Н.Н., Колесниченко Н.В., Батова Т.И. // Нефтехимия. 2020. Т. 2. № 1. С. 74. https://doi.org/10.53392/27130304_2020_2_1_74]https://doi.org/10.1134/S0965544120040064
- Samantaray M.K., D’Elia V., Pump E. et al. // Chem. Rev. 2020. V. 120. P. 734. https://doi.org/10.1021/acs.chemrev.9b00238
- Ding Sh., Hülsey M.J., Pérez-Ramírez J., Yan N. // Joule. 2019. V. 3. P. 2897. https://doi.org/10.1016/j.joule.2019.09.015
- Bai S., Liu F., Huang B. et al. // Nat. Commun. 2020. V. 11. P. 954. https://doi.org/10.1038/s41467-020-14742-x
- Zhang T., Chen Z., Walsh A.G. et al. // Adv. Mater. 2020. V. 32. № 44. P. 2002910. https://doi.org/10.1002/adma.202002910
- Ji Sh., Chen Y., Wang X. et al. // Chem. Rev. 2020. V. 120. № 21. P. 11900. https://doi.org/10.1021/acs.chemrev.9b00818
- Budiman A.W., Nam J.S., Park J.H. et al. // Catal. Surv. Asia. 2016. V. 20. P. 173.https://doi.org/10.1007/s10563-016-9215-9
- Ren Z., Lyu Y., Song X. et al. // Adv. Mater. 2019. V. 31. P. 1904976. https://doi.org/10.1002/adma.201904976
- Ren Z., Lyu Y., Feng S. et al. // Mol. Catal. 2017. V. 442. P. 83. https://doi.org/10.1016/j.mcat.2017.09.007
- Park K., Lim S., Baik J.H. et al. // Catal. Sci. Technol. 2018. V. 8. P. 2894. https://doi.org/10.1039/C8CY00294K
- Saikia P.K., Sarmah P.P., Borah B.J. et al. // J. Mol. Catal. A: Chem. 2016. V. 412. P. 27. https://doi.org/10.1016/j.molcata.2015.11.015
- Qi J., Finzel J., Robatjazi H.et al. // J. Am. Chem. Soc. 2020. V. 142. № 33. P. 14178. https://doi.org/10.1021/jacs.0c05026
- Kolesnichenko N.V., Batova T.I., Stashenko A.N. et al. // Microporous Mesoporous Mater. 2022. V. 344. P. 112239. https://doi.org/10.1016/j.micromeso.2022.112239
- Batova T.I., Obukhova T.K., Stashenko A.N. et al. // Pet. Chem. 2022. V. 62. P. 425. https://doi.org/10.1134/S0965544122020165
- Babucci M., Guntida A., Gates B.C. // Chem. Rev. 2020. V. 120. № 21. P. 11956. https://doi.org/10.1021/acs.chemrev.0c00864
- Ogino I., Gates B.C. // J. Phys. Chem. C. 2010. V. 114. № 18. P. 8405. https://doi.org/10.1021/jp100673y
- Osuga R., Saikhantsetseg B., Yasuda S. et al. // Chem. Commun. 2020. V. 56. P. 5913. https://doi.org/10.1039/D0CC02284E
- Asokan C., Thang H.V., Pacchioni G., Christopher P. // Catal. Sci. Technol. 2020. V. 10. P. 1597. https://doi.org/10.1039/D0CY00146E
- Matsubu J.C., Yang V.N., Christopher P. // J. Am. Chem. Soc. 2015. V. 137. P. 3076. https://doi.org/10.1021/ja5128133
- Hou Y., Ogasawara S., Fukuoka A., Kobayashi H. // Catal. Sci. Technol. 2017. V. 7. P. 6132. https://doi.org/10.1039/C7CY02183F
- Chernyshov A., Veligzhanin A., Zubavichus Y. // Nucl. Instr. Meth. Phys. Res. A. 2009. V. 603. P. 95. https://doi.org/10.1016/j.nima.2008.12.167
- Trofimova N., Veligzhanin A., Murzin V. et al. // Ross. Nanotechnol. 2013. V. 8. P. 396. https://doi.org/10.1134/S1995078013030191
- Ravel B., Newville M. // J. Synchrotron. Rad. 2005. V. 12. P. 537 https://doi.org/10.1107/S0909049505012719
- Newille M. // J. Synchrotron. Rad. 2001. V. 8. 322. https://doi.org/10.1107/S0909049500016964
- Sun Q., Wang N., Zhang T. et al. // Angew. Chem. Int. Ed. 2019. V. 58. № 51. P. 18570. https://doi.org/10.1002/anie.201912367
- Liang A.J., Gates B.C. // J. Phys. Chem. C. 2008. V. 112. P. 18039. https://doi.org/10.1021/jp805917g
- Kolesnichenko N.V., Snatenkova Y.M., Batova T.I. et al. // Microporous Mesoporous Mater. 2022. V. 330. P. 111581. https://doi.org/10.1016/j.micromeso.2021.111581
- Bulanek R., Voleska I., Ivanova E. et al. // J. Phys. Chem. C. 2009. V. 113. № 25. P. 11066. https://doi.org/10.1021/jp901575p
- Voleská I., Nachtigall P., Ivanova E. et al. // Catal. Today. 2015. V. 243. P. 53. https://doi.org/10.1016/j.cattod.2014.07.029
- Arean C.O., Nachtigallova D., Nachtigall P. et al. // Phys. Chem. Chem. Phys. 2007. V. 9. No. 12. P. 1421. https://doi.org/10.1039/b615535a
- Davydov A. Molecular Spectroscopy of Oxide Catalyst Surfaces. England: John Wiley & Sons Ltd, Chichester, 2003. p.668.
- Shilina M.I., Udalova O.V., Nevskaya S.M. // Kinet. Catal. 2013. V. 54. P. 691. [Шилина М.И, Удалова О.В., Невская С.М. // Кинетика и катализ. 2013. Т. 54. № 6. С. 731. https://doi.org/10.7868/S0453881113060117]https://doi.org/10.1134/S0023158413060116
- Ivanova E., Mihaylov M., Thibault-Starzyk F. et al. // J. Catal. 2005. V. 236. P. 168–171. https://doi.org/10.1016/j.jcat.2005.09.017
- Hadjiivanov K., Ivanova E., Dimitrov L., Knözinger H. // J. Molec. Struct. 2003. V. 661–662. P. 459. https://doi.org/10.1016/j.molstruc.2003.09.007
Дополнительные файлы
